WHAT IS GOOD MATHEMATICS? 11
[7] H. Furstenberg, Y. Katznelson, D. Ornstein, The ergodic theoretical proof of Szemer´edi’s theorem,
Bull. Amer. Math. Soc. 7 (1982), 527–552.
[8] D. Goldston, C. Yıldırım, S mall gaps between primes, I, preprint.
[9] D. A. Goldston, J. Pintz, and C.Y. Yıldırım, Small gaps between primes II, preprint.
[10] T. Gowers, Lower bounds of tower type for S z emer´edi’s uniformity lemma, Geom. Func. Anal. 7
(1997), 322–337.
[11] T. Gowers, A new proof of S z emer´edi’s theorem for arithmetic progressions of length four, Geom.
Func. Anal. 8 (1998), 529–551.
[12] T. Gowers, The two cult ures of mathematics, in: Mathematics: Frontiers and Perspectives, In-
ternational Mathematical Union. V. Arnold, M. Atiyah, P. Lax, B. Mazur, Editors. American
Mathematical Society, 2000.
[13] T. Gowers, A new proof of Szemeredi’s theorem, Geom. Func. Anal. 11 (2001), 465-588.
[14] T. Gowers, Quasirandomness, counting and regularity for 3-uniform hypergraphs, Combin. Probab.
Comput. 15 (2006), no. 1-2, 143–184.
[15] B.J. Green, Roth’s theorem in the primes, . Math. 161 (2005), 1609–1636.
[16] B.J. Green, A Szemer´edi-type regularity lemma in abelian groups, Geom. Func. Anal. 15 (2005),
no. 2, 340–376.
[17] B.J. Green, T. Tao, The primes contain arbitrarily long arithmetic progressions, to appear, Ann.
Math.
[18] A.W. Hales, R.I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963),
222–229.
[19] D.R. Heath-Brown, Three primes and an almost prime in arithmetic progression, J. London Math.
Soc. (2) 23 (1981), 396–414.
[20] B. Host, B. Kra, Non-conventional ergodic averages and nilmanifolds, Annals of Math. 161 (2005),
397–488.
[21] Y. Kohayakawa, T. Luczak, V. R¨odl, Arithmetic progressions of length three in subsets of a random
set, Acta Arith. 75 (1996), no. 2, 133–163.
[22] B. Nagle, V. R¨odl, M. Schacht, The counting lemma for regular k-uniform hypergraphs, preprint.
[23] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264–285.
[24] V. R¨odl, M. Schacht, Regular partitions of hypergraphs, preprint.
[25] V. R¨odl, J. Skokan, Regularity lemma for k-uniform hypergraphs, Random Structures and Algo-
rithms, 25 (2004), no. 1, 1–42.
[26] V. R¨odl, J. Skokan, Applications of the regularity lemma for uniform hypergraphs, Random Struc-
tures and Algorithms, 28 (2006), no. 2, 180–194.
[27] K.F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 245-252.
[28] K.F. Roth, Irregularities of sequences relative to arithmetic progressions, IV. Period. Math. Hun-
gar. 2 (1972), 301–326.
[29] I. Ruzsa, E. Szemer´edi, Triple systems with no six points carrying three triangles, Colloq. Math.
Soc. J. Bolyai 18 (1978), 939–945.
[30] S. Shelah, Primitive recursive bounds for van der Waerden numbers, J . Amer. Math. Soc. 1
(1988), 683–697.
[31] E. Szemer´edi, On sets of integers containing no four elements in arithmetic progression, Acta
Math. Acad. Sci. Hungar. 20 (1969), 89–104.
[32] E. Szemer´edi, On sets of integers containing no k elements in arithmetic progression, Acta Arith.
27 (1975), 299–345.
[33] T. Tao, The dichotomy between structure and randomness, arithmetic progressions, and the primes,
to appear, ICM 2006 proceedings.
[34] T. Tao, A quantitative ergodic t heory proof of Szemer´edi’s theorem, preprint.
[35] T. Tao and V. Vu, Additive Combinatorics, Cambridge Univ. Press, 2006.
[36] J.G. van der Corput,
¨
Uber Summen von Primzahlen und Primzahlquadraten, Math. Ann. 116
(1939), 1–50.
[37] B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw. Arch. Wisk. 15 (1927),
212–216.
[38] E. Wigner, The Unreasonable Effectiveness of Mathematics in the Natural Sciences, Comm. Pure
Appl. Math. 13 (1960).