The geological footprint of the Anthropocene
While an official declaration of the Anthropocene as a unique
geological era is still pending (Crutzen, 2002; Zalasiewicz et al.,
2017), it is already clear that our human efforts will impact the
geologic record being laid down today (Waters et al., 2014).
Some of the discussion of the specific boundary that will define
this new period is not relevant for our purposes because the mar-
kers proposed (ice core gas concentrations, short-half-lived radio-
activity, the Columbian exchange) (e.g. Lewis & Maslin, 2015;
Hamilton, 2016) are not going to be geologically stable or distin-
guishable on multi-million year timescales. However, there are
multiple changes that have already occurred that will persist.
We discuss a number of these below.
There is an interesting paradox in considering the
Anthropogenic footprint on a geological timescale. The longer
human civilization lasts, the larger the signal one would expect
in the record. However, the longer a civilization lasts, the more
sustainable its practices would need to have become in order to
survive. The more sustainable a society (e.g. in energy generation,
manufacturing or agriculture) the smaller the footprint on the rest
of the planet. But the smaller the footprint, the less of a signal will
be embedded in the geological record. Thus, the footprint of civ-
ilization might be self-limiting on a relatively short timescale. To
avoid speculating about the ultimate fate of humanity, we will
consider impacts that are already clear, or that are foreseeable
under plausible trajectories for the next century (e.g. Nazarenko
et al., 2015; Köhler, 2016).
We note that effective sedimentation rates in ocean sediment
for cores with multi-million-year-old sediment are of the order
of a few cm/1000 years at best, and while the degree of bioturb-
ation may smear a short-period signal, the Anthropocene will
likely only appear as a section a few cm thick, and appear almost
instantaneously in the record.
Stable isotope anomalies of carbon, oxygen, hydrogen and
nitrogen
Since the mid-18th century, humans have released over 0.5 trillion
tonnes of fossil carbon via the burning of coal, oil and natural gas
(Le Quéré et al., 2016), at a rate orders of magnitude faster than nat-
ural long-term sources or sinks. In addition, there has been wide-
spread deforestation and addition of carbon dioxide into the air
via biomass burning. All of this carbon is biological in origin and
is thus depleted in
13
C compared with the much larger pool of inor-
ganic carbon (Revelle & Suess, 1957). Thus, the ratio of
13
Cto
12
Cin
the atmosphere, ocean and soils is decreasing (an impact known as
the ‘Suess Effect’ Quay et al., 1992) with a current change of around
− 1‰ δ
13
C since the pre-industrial (Böhm et al., 2002;Eideetal.,
2017) in the surface ocean and atmosphere (Fig. 1(a)).
As a function of the increase of fossil carbon into the system,
augmented by black carbon changes, other non-CO
2
trace green-
house gases (e.g. N
2
O, CH
4
and chloro-fluoro-c arbons (CFCs)),
global industrialization has been accompanied by a warming of
about 1°C so far since the mid-19th century (Bindoff et al.,
2013; GISTEMP Team, 2016). Due to the temperature-related
fractionation in the formation of carbonates (Kim & O’Neil,
1997)(−0.2‰
d
18
O per °C) and strong correlation in the
extra-tropics between temperature and δ
18
O (between 0.4 and
0.7‰ per °C) (and ∼8× as sensitive for deuterium isotopes rela-
tive to hydrogen (δD)), we expect this temperature rise to be
detectable in surface ocean carbo nates (notably foraminifera),
organic biomarkers, cave records (stalactites), lake ostracods and
high-latitude ice cores, though only the first two of these will be
retrievable in the timescales considered here.
The combustion of fossil fuel, the invention of the Haber–
Bosch process, the large-scale application of nitrogenous fertili-
zers and the enhanced nitrogen fixation associated with cultivated
plants, have caused a profound impact on nitrogen cycling
(Canfield et al., 2010), such that δ
15
N anomalies are already
detectable in sediments remote from civilization (Holtgrieve
et al., 2011).
Sedimentological records
There are multiple causes of a greatly increased sediment flow in
rivers and therefore in deposition in coastal environments. The
advent of agriculture and associated deforestation have lead to
large increases in soil erosion (Goudie, 2000; National Research
Council, 2010). Furthermore, canalization of rivers (such as the
Mississippi) have led to much greater oceanic deposition of sedi-
ment than would otherwise have occurred. This tendency is miti-
gated somewhat by concurrent increases in river dams which
reduce sediment flow downstream. Additionally, increasing tem-
peratures and atmospheric water vapour content have led to
greater intensity of precipitation (Kunkel et al., 2013) which, on
its own, would also lead to greater erosion, at least regionally.
Coastal erosion is also on the increase as a function of the rising
sea level, and in polar regions is being enhanced by reductions in
sea ice and thawing permafrost (Overeem et al., 2011).
In addition to changes in the flux of sediment from land to
ocean, the composition of the sediment will also change. Due
to the increased dissolution of CO
2
in the ocean as a function
of anthropogenic CO
2
emissions, the upper ocean is acidifying
(a 26% increase in H
+
or 0.1 pH decrease since the 19th century)
(Orr et al., 2005). This will lead to an increase in CaCO
3
dissol-
ution within the sediment that will last until the ocean can neu-
tralize the increase. There will also be important changes in
mineralogy (Zalasiewicz et al., 2013; Hazen et al., 2017).
Increases in continental weathering are also likely to change ratios
of strontium and osmium (e.g.
87
Sr/
86
Sr and
187
Os/
188
Os ratios)
(Jenkyns, 2010).
As discussed above, nitrogen load in rivers is increasing as a
function of agricultural practices. This in turn is leading to
more microbial activity in the coastal ocean which can deplete
dissolved oxygen in the water column (Diaz & Rosenberg,
2008), and recent syntheses suggests a global decline already of
about 2% (Ito et al., 2017; Schmidtko et al., 2017). This in turn
is leading to an expansion of the oxygen minimum zones, greater
ocean anoxia and the creation of so-called ‘dead-zones’ (Breitburg
et al., 2018). Sediment within these areas will thus have greater
organic content and less bioturbation (Tyrrell, 2011). The ultim-
ate extent of these dead zones is unknown.
Furthermore, anthropogenic fluxes of lead, chromium, antim-
ony, rhenium, platinum group metals, rare earths and gold, are
now much larger than their natural sources (Sen & Peucker-
Ehrenbrink, 2012;Gałuszka et al., 2013), implying that there
will be a spike in fluxes in these metals in river outflow and
hence higher concentrations in coastal sediments.
Faunal radiation and extinctions
The last few centuries have seen significant changes in the abun-
dance and spread of small animals, particularly rats, mice and
144 Schmidt and Frank
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1473550418000095
Downloaded from https://www.cambridge.org/core. IP address: 67.164.57.139, on 21 Apr 2019 at 20:40:28, subject to the Cambridge Core terms of use, available at