th at are adjacent to WNS counties (see table
S12 for evidence of spatial spillover to adjacent
counties). For more details, see the methods
sectioninthesupplementarymaterials.
REFERENCES AND NOTES
1. D. P. Tittensor et al., A mid-term analysis of progress toward
international biodiversity targets. Science 346, 241–244
(2014). doi: 10.1126/science.1257484; pmid: 25278504
2. Secretariat of the Convention on Biological Diversity, “Global
Biodiversity Outlook 5” (2020); https://www.cbd.int/gbo/
gbo5/publication/gbo-5-en.pdf.
3. U. Pascual et al., Governing for Transformative Change across
the Biodiversity–Climate–Society Nexus. Bioscience 72,
684–704 (2022). doi: 10.1093/biosci/biac031
4. A. Arneth et al., Post-2020 biodiversity targets need to embrace
climate change. Proc. Natl. Acad. Sci. U.S.A. 117, 30882–30 891
(2020). doi: 10.1073/pnas.2009584117;pmid:33288709
5. H.-O. Pörtner et al., Scientific outcome of the IPBES-IPCC
co-sponsored workshop on biodiversity and climate change,
Version 5, Zenodo (2021); https://doi.org/10.5281/
zenodo.5101125.
6. B. J. Cardinale et al., Biodiversity loss and its impact on
humanity. Nature 486,59–67 (2012). doi: 10.1038/
nature11148; pmid: 22678280
7. R. Dirzo et al., Defaunation in the Anthropocene. Science 345,
401–406 (2014). doi: 10.1126/science.1251817;
pmid: 25061202
8. G. Ceballos et al., Accelerated modern human-induced species
losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253
(2015). doi: 10.1126/sciadv.1400253; pmid: 26601195
9. S. Díaz et al., Pervasive human-driven decline of life on Earth
points to the need for transformative change. Science 366
,
eaax3100 (2019). doi: 10.1126/science.aax3100;
pmid: 31831642
10. P. Cardoso et al., Scientists’ warning to humanity on insect
extinctions. Biol. Conserv. 242, 108426 (2020). doi: 10.1016/
j.biocon.2020.108426
11. C. Paul et al., On the functional relationship between
biodiversity and economic value. Sci. Adv. 6, eaax7712 (2020).
doi: 10.1126/sciadv.aax7712; pmid: 32064338
12. M. L. Weitzman, On Diversity. Q. J. Econ. 107, 363–405 (1992).
doi: 10.2307/2118476
13. K. Nehring, C. Puppe, A Theory of Diversity. Econometrica 70,
1155–1198 (2002). doi: 10.1111/1468-0262.00321
14. W. A. Brock, A. Xepapadeas, Valuing Biodiversity from an
Economic Perspective: A Unified Economic, Ecological, and
Genetic Approach. Am. Econ. Rev. 93, 1597–1614 (2003).
doi: 10.1257/000282803322655464
15. P. Dasgupta, “The Economics of Biodiversity: The Dasgupta
Review” (HM Treasury, 2021).
16. G. Heal, Valuing Ecosystem Services. Ecosystems 3,24–30
(2000). doi: 10.1007/s100210000006
17. E. P. Fenichel, J. K. Abbott, Natural Capital: From Metaphor to
Measurement. J. Assoc. Environ. Resour. Econ. 1,1–27 (2014).
doi: 10.1086/676034
18. P. J. Ferraro, J. N. Sanchirico, M. D. Smith, Causal inference in
coupled human and natural systems. Proc. Natl. Acad. Sci. U.S.A.
116,5311–5318 (2019). doi: 10.1073/pnas.1805563115;
pmid: 30126992
19. R. Costanza et al., The value of the world’s ecosystem services
and natural capital. Nature 387, 253–260 (1997). doi: 10.1038/
387253a0
20. S. Polasky et al., Role of economics in analyzing the
environment and sustainable development. Proc. Natl. Acad.
Sci. U.S.A. 116, 5233–5238 (2019). doi: 10.1073/
pnas.1901616116; pmid: 30890656
21. K. J. Arrow, A. C. Fisher, Environmental Preservation,
Uncertainty, and Irreversibility. Q. J. Econ. 88, 312–319 (1974).
doi: 10.2307/1883074
22. P. Dasgupta, G. Heal, The Optimal Depletion of Exhaustible
Resources. Rev. Econ. Stud. 41,3–28 (1974). doi: 10.2307/
2296369
23. J. Stiglitz, Growth with Exhaustible Natural Resources: Efficient
and Optimal Growth Paths. Rev. Econ. Stud. 41, 123–137
(1974). doi: 10.2307/2296377
24. R. M. Solow, in Economics of the Environment: Selected
Readings, N. D. Robert, Ed. (Norton, 1993), pp. 179–187.
25. G. C. Daily et al., The value of nature and the nature of value.
Science 289, 395–396 (2000). doi: 10.1126/
science.289.5478.395; pmid: 10939949
26. J. G. Boyles, P. M. Cryan, G. F. McCracken, T. H. Kunz,
Economic importance of bats in agriculture. Science
332,41–42 (2011). doi: 10.1126/science.1201366;
pmid: 21454775
27. T. H. Kunz, E. Braun de Torrez, D. Bauer, T. Lobova,
T. H. Fleming, Ecosystem services provided by bats. Ann. N. Y.
Acad. Sci. 1223,1–38 (2011). doi: 10.1111 /j.1749-
6632.2011.06004.x;pmid:2144996 3
28. B. P. Baker, T. A. Green, A. J. Loker, Biological Control and
Integrated Pest Management in Organic and Conventional
Systems. Biol. Control 140, 104095 (2020). doi: 10.1016/
j.biocontrol.2019.104095
29. E. Brainerd, N. Menon, Seasonal effects of water quality: The
hidden costs of the Green Revolution to infant and child health
in India. J. Dev. Econ. 107,49–64 (2014). doi: 10.1016/
j.jdeveco.2013.11.004
30. W. Lai, Pesticide use and health outcomes: Evidence
from agricultural water pollution in China. J. Environ.
Econ. Manage. 86,93–120 (2017). doi: 10.1016/
j.jeem.2017.05.006
31. M. Dias, R. Rocha, R. R. Soares, Down the River: Glyphosate
Use in Agriculture and Birth Outcomes of Surrounding
Populations. Rev. Econ. Stud. 90, 2943–2981 (2023).
doi: 10.1093/restud/rdad011
32. C. A. Taylor, “Cicadian Rhythm: Insecticides, Infant Health and
Long-term Outcomes,” CEEP Working Paper Series, Working
Paper no. 9 (2021); https://ceep.columbia.edu/sites/default/
files/content/papers/n9.pdf.
33. M. B. Kalka, A. R. Smith, E. K. V. Kalko, Bats limit arthropods
and herbivory in a tropical forest. Science 320, 71 (2008).
doi: 10.1126/science.1153352; pmid: 18388286
34. K. Williams-Guillén, I. Perfecto, J. Vandermeer, Bats limit
insects in a neotropical agroforestry system. Science 320,70
(2008). doi: 10.1126/science.1152944; pmid: 18388285
35. J. J. Maine, J. G. Boyles, Bats initiate vital agroecological
interactions in corn. Proc. Natl. Acad. Sci. U.S.A. 112,
12438–12443 (2015). doi: 10.1073/pnas.1505413112;
pmid: 26371304
36. C. Tuneu-Corral et al., Pest suppression by bats and
management strategies to favour it: A global review. Biol. Rev.
Camb. Philos. Soc. 98, 1564–1582 (2023). doi: 10.1111/
brv.12967; pmid: 37157976
37. D. Pimentel et al., Environmental and Economic Effects of
Reducing Pesticide Use: A substantial reduction in pesticides
might increase food costs only slightly. Bioscience 41,
402–409 (1991). doi: 10.2307/1311747
38. W. F. Frick et al., An emerging disease causes regional
population collapse of a common North American bat species.
Science 329, 679–682 (2010). doi: 10.1126/science.1188594;
pmid: 20689016
39. D. S. Blehert et al., Bat white-nose syndrome: An emerging
fungal pathogen? Science 323, 227 (2009). doi: 10.1126/
science.1163874; pmid: 18974316
40. White-Nose Syndrome Response Team (2024); https://www.
whitenosesyndrome.org.
41. K. P. Drees et al., Phylogenetics of a Fungal Invasion: Origins
and Widespread Dispersal of White-Nose Syndrome. mBio 8,
e01941-17 (2017). doi: 10.1128/mBio.01941-17;
pmid: 29233897
42. S. P. Maher et al., Spread of white-nose syndrome on a
network regulated by geography and climate. Nat. Commun. 3,
1306 (2012). doi: 10.1038/ncomms2301; pmid: 23250436
43. M. L. Verant, J. G. Boyles, W. Waldrep Jr., G. Wibbelt,
D. S. Blehert, Temperature-dependent growth of Geomyces
destructans, the fungus that causes bat white-nose syndrome.
PLOS ONE 7, e46280 (2012). doi: 10.1371/journal.
pone.0046280; pmid: 23029462
44. J. M. Palmer, K. P. Drees, J. T. Foster, D. L. Lindner, Extreme
sensitivity to ultraviolet light in the fungal pathogen causing
white-nose syndrome of bats. Nat. Commun. 9, 35 (2018).
doi: 10.1038/s41467-017-02441-z; pmid: 29295979
45. M. R. Rosenzweig, K. I. Wolpin, Natural “Natural Experiments”
in Economics. J. Econ. Lit. 38, 827–874 (2000). doi: 10.1257/
jel.38.4.827
46. M. Greenstone, T. Gayer, Quasi-experimental and experimental
approaches to environmental economics. J. Environ. Econ.
Manage. 57,21–44 (2009). doi: 10.1016/j.jeem.2008.02.004
47. M. E. Power et al., Challenges in the Quest for Keystones:
Identifying keystone species is difficult—but essential to
understanding how loss of species will affect ecosystems.
Bioscience 46, 609–620 (1996). doi: 10.2307/1312990
48. N. Burkhard, J. A. Guth, Rate of volatilisation of pesticides from
soil surfaces; comparison of calculated results with those
determined in a laboratory model system. Pestic. Sci. 12,
37–44 (1981). doi: 10.1002/ps.2780120106
49. H. Rüdel, Volatilisation of pesticides from soil and plant
surfaces. Chemosphere 35,143–152 (1997). doi: 10.1016/
S0045-6535(97)00146-X
50. K. Y. Chay, M. Greenstone, The Impact of Air Pollution on
Infant Mortality: Evidence from Geographic Variation in
Pollution Shocks Induced by a Recession. Q. J. Econ. 118,
1121–1167 (2003). doi: 10.1162/00335530360698513
51. J. Currie, M. Neidell, Air Pollution and Infant Health: What Can
We Learn from California’s Recent Experience? Q. J. Econ. 120,
1003–1030 (2005). doi: 10.1093/qje/120.3.1003
52. T. Dalhaus, W. Schlenker, M. M. Blanke, E. Bravin, R. Finger,
The Effects of Extreme Weather on Apple Quality. Sci. Rep. 10,
7919 (2020). doi: 10.1038/s41598-020-64806-7;
pmid: 32404968
53. D. T. Manning, A. Ando, Ecosystem Services and Land Rental
Markets: Producer Costs of Bat Population Crashes. J. Assoc.
Environ. Resour. Econ. 9, 1235–1277 (2022). doi: 10.1086/
720303
54. W. F. Frick et al., Fatalities at wind turbines may threaten
population viability of a migratory bat. Biol. Conserv. 209,
172–177 (2017). doi: 10.1016/j.biocon.2017.02.023
55. V. B. Salinas-Ramos, A. Tomassini, F. Ferrari, R. Boga,
D. Russo, Admittance to Wildlife Rehabilitation Centres Points
to Adverse Effects of Climate Change on Insectivorous Bats.
Biology 12, 543 (2023). doi: 10.3390/biology12040543;
pmid: 37106744
56. E. Frank, Supplementary Materials and Replication Folder for
Frank (2024), Data set, Zenodo (2024); https://doi.org/
10.5281/zenodo.10908500.
57. US National Center for Health Statistics, Restricted-Access
Linked Birth-Death Certificates; https://www.cdc.gov/nchs/
nvss/nvss-restricted-data.htm.
AC KN OW LE D GM E NT S
I am grateful to D. Almond, G. Heal, S. Naeem, and W. Schlenker for
their advice and support. I thank J. Anttila-Hughes, B. Balmford,
A. Baum, Z. Burivalova, F. Burlig, T. Cameron, T. Carleton, J. Colmer,
A. D’Agostino, G. Dwyer, A. Ebenstein, G. Englander, R. Fishman,
M. Greenstone, M. Hardy, S. Hsiang, K. Ito, A. Jina, R. Kellogg,
S. Kolstoe, K. Meng, A. Missirian, N. Ngo, K. Oremus, Y. Reingewertz,
J. Rising, and Y. Shem-Tov for their helpful comments. I thank
S. Banjara, S. Gerstner, and P. Rodrigue for excellent research
assistance. I also thank T. Cheng, J. Reichard, and W. Stone for their
help in obtaining the data. All errors are mine. Funding: This project
was supported by a research fellowship from the Columbia Global
Policy Initiative, with the support of the Endeavor Foundation.
Author contributions: E.G.F. led all stages of the research design,
analysis, and writing. Competing interests: The author declares
that they have no competing interests. Data and materials
availability: All data (except for the health outcomes) and code are
available on Zenodo (56), and the data to replicate the figures are
available in the supplementary materials. Researchers can obtain
access to the health data used in the analysis by applying through the
US National Center for Health Statistics [see details at https://www.
cdc.gov/nchs/nvss/nvss-restricted-data.htm (57)]. License
information: Copyright © 2024 the authors, some rights reserved;
exclusive licensee American Association for the Advancement of
Science. No claim to original US government works. https://www .
science.org/about/science-licenses-journal-article-reuse
SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.adg0344
Materials and Methods
Supplementary Text
Figs. S1 to S21
Tables S1 to S25
References (58–107)
Data S1 to S9
Submitted 28 November 2022; resubmitted 7 February 2024
Accepted 1 August 2024
10.1126/science.adg0344
RESEARCH | RESEARCH ARTICLE
Frank, Science 385, eadg0344 (2024) 6 September 2024 6of6
Downloaded from https://www.science.org on September 07, 2024