[7] C. R. Rao, Information and the accuracy attain-
able in the estimation of statistical parameters,
Bulletin of the Calcutta Mathematical Society
37, 81 (1945).
[8] H. Cramér, Mathematical Methods of Statistics
(PMS-9), Princeton University Press 1946.
[9] C. W. Helstrom, Quantum Detection and Esti-
mation Theory, volume 123 of Mathematics in
Science and Engineering, Elsevier (1976).
[10] M. Hübner, Explicit computation of the Bu-
res distance for density matrices, Phys. Lett. A
163, 239 (1992).
[11] M. Hübner, Computation of Uhlmann’s paral-
lel transport for density matrices and the Bu-
res metric on three-dimensional Hilbert space,
Phys. Lett. A 179, 226 (1993).
[12] P. Kolenderski and R. Demkowicz-Dobrzanski,
Optimal state for keeping reference frames
aligned and the Platonic solids, Phys. Rev. A
78, 052333 (2008).
[13] A. Z. Goldberg and D. F. V. James, Quantum-
limited Euler angle measurements using antico-
herent states, Phys. Rev. A 98, 032113 (2018).
[14] Y. Mo and G. Chiribella, Quantum-enhanced
learning of rotations about an unknown direc-
tion, New J. Phys. 21, 113003 (2019).
[15] C. Chryssomalakos and H. Hernández-
Coronado, Optimal quantum rotosensors,
Phys. Rev. A 95, 052125 (2017).
[16] F. T. Arecchi, E. Courtens, R. Gilmore, and H.
Thomas, Atomic Coherent States in Quantum
Optics, Phys. Rev. A 6, 2211 (1972).
[17] J. Zimba, “Anticoherent” Spin States via the
Majorana Representation, Electr. J. Theor.
Phys. 3, 143 (2006).
[18] F. Bouchard, P. de la Hoz, G. Björk, R. W.
Boyd, M. Grassl, Z. Hradil, E. Karimi, A.
B. Klimov, G. Leuchs, J. Rehacek, and L. L.
Sánchez-Soto, Quantum metrology at the limit
with extremal Majorana constellations, Optica
4, 1429 (2017).
[19] T. Chalopin, C. Bouazza, A. Evrard, V.
Makhalov, D. Dreon, J. Dalibard, L. A.
Sidorenkov, and S. Nascimbene, Quantum-
enhanced sensing using non-classical spin states
of a highly magnetic atom, Nature Communica-
tions 9, 4955 (2018).
[20] D. Baguette and J. Martin, Anticoherence mea-
sures for pure spin states, Phys. Rev. A 96,
032304 (2017).
[21] L. C. Biedenharn and J. D. Louck, Angular Mo-
mentum in Quantum Physics, Cambridge Uni-
versity Press 1984.
[22] I. Bengtsson and K. Życzkowski, Geometry of
Quantum States : An Introduction to Quan-
tum Entanglement, 2nd ed. Cambridge Univer-
sity Press 2017.
[23] B. Coecke, A Representation for a Spin-S En-
tity as a Compound System in R
3
Consisting of
2S Individual Spin-1/2 Entities, Foundations of
Physics 28, 1347 (1998).
[24] O. Giraud, D. Braun, D. Baguette, T. Bastin,
and J. Martin, Tensor representation of spin
states, Phys. Rev. Lett. 114, 080401 (2015).
[25] S. Weinberg, Feynman Rules for Any Spin,
Phys. Rev. 133, B1318 (1964).
[26] D. Baguette, T. Bastin, and J. Martin, Mul-
tiqubit symmetric states with maximally mixed
one-qubit reductions, Phys. Rev. A 90, 032314
(2014).
[27] O. Giraud, P. Braun, and D. Braun, Quantify-
ing Quantumness and the Quest for Queens of
Quantum, New J. Phys. 12, 063005 (2010).
[28] G. Björk, A. B. Klimov, P. de la Hoz, M. Grassl,
G. Leuchs, L. L. Sánchez-Soto, Extremal quan-
tum states and their Majorana constellations,
Phys. Rev. A 92, 031801(R) (2015).
[29] G. Björk, M. Grassl, P. de la Hoz, G. Leuchs and
L. L. Sánchez-Soto, Stars of the quantum Uni-
verse: extremal constellations on the Poincaré
sphere, Phys. Scr. 90, 108008 (2015).
[30] P. Delsarte, J. M. Goethals, J. J. Seidel, Spher-
ical codes and designs, Geometriae Dedicata 6,
363 (1977).
[31] R. H. Hardin and N. J. A. Sloane, McLaren’s
Improved Snub Cube and Other New Spheri-
cal Designs in Three Dimensions, Discrete and
Computational Geometry 15, 429 (1996).
[32] R. E. Schwartz, The Five-Electron Case of
Thomson’s Problem, Experimental Mathemat-
ics 22, 157 (2013).
[33] D. Baguette, F. Damanet, O. Giraud, and J.
Martin, Anticoherence of spin states with point-
group symmetries, Phys. Rev. A 92, 052333
(2015).
[34] See e.g. http://polarization.markus-grassl.de/,
http://www.oq.ulg.ac.be and Refs. [20, 28].
[35] J. S. Sidhu and P. Kok, A Geometric Perspec-
tive on Quantum Parameter Estimation, AVS
Quantum Science 2, 014701 (2020).
[36] D. A. Varshalovich, A. N. Moskalev, V. K.
Khersonskii, Quantum Theory Of Angular Mo-
mentum, World Scientific (1988).
Accepted in Quantum 2020-06-16, click title to verify. Published under CC-BY 4.0. 18