tems. Phys. Rev. E, 81:011109, 2010. DOI:
10.1103/PhysRevE.81.011109.
[5] P. Reimann. Canonical thermalization. New
J. Phys., 12:055027, 2010. DOI: 10.1088/1367-
2630/12/5/055027.
[6] P. Reimann and M. Kastner. Equilibration of
isolated macroscopic quantum systems. New
J. Phys., 14:043020, 2012. DOI: 10.1088/1367-
2630/14/4/043020.
[7] C. Gogolin and J. Eisert. Equilibration, ther-
malisation, and the emergence of statistical me-
chanics in closed quantum systems. Rep. Prog.
Phys., 79:056001, 2016. DOI: 10.1088/0034-
4885/79/5/056001.
[8] T. Mori, T. N. Ikeda, E. Kaminishi, and M. Ueda.
Thermalization and prethermalization in isolated
quantum systems: a theoretical overview. J.
Phys. B, 51:112001, 2018. DOI: 10.1088/1361-
6455/aabcdf.
[9] A. J. Short and T. C. Farrelly. Quantum equili-
bration in finite time. New J. Phys., 14:013063,
2012. DOI: 10.1088/1367-2630/14/1/013063.
[10] S. Goldstein, T. Hara, and H. Tasaki. Time scales
in the approach to equilibrium of macroscopic
quantum systems. Phys. Rev. Lett., 111:140401,
2013. DOI: 10.1103/PhysRevLett.111.140401.
[11] S. Goldstein, T. Hara, and H. Tasaki. Ex-
tremely quick thermalization in a macroscopic
quantum system for a typical nonequilibrium
subspace. New J. Phys., 17:045002, 2015. DOI:
10.1088/1367-2630/17/4/045002.
[12] A. S. L. Malabarba, L. P. García-Pintos, N. Lin-
den, T. C. Farrelly, and A. J. Short. Quantum
systems equilibrate rapidly for most observables.
Phys. Rev. E, 90:012121. DOI: 10.1103/Phys-
RevE.90.012121.
[13] T. Farrelly. Equilibration of quantum gases. New
J. Phys., 18:073014, 2016. DOI: 10.1088/1367-
2630/18/7/073014.
[14] P. Reimann. Typical fast thermaliza-
tion processes in closed many-body sys-
tems. Nat. Commun., 7:10821, 2016. DOI:
10.1038/ncomms10821.
[15] H. Wilming, M. Goihl, C. Krumnow, and J. Eis-
ert. Towards local equilibration in closed in-
teracting quantum many-body systems. URL
https://arxiv.org/abs/1704.06291.
[16] L. P. García-Pintos, N. Linden, A. S. L. Mal-
abarba, A. J. Short, and A. Winter. Equi-
libration time scales of physically relevant ob-
servables. Phys. Rev. X, 7:031027, 2017. DOI:
10.1103/PhysRevX.7.031027.
[17] T. R. de Oliveira, C. Charalambous,
D. Jonathan, M. Lewenstein, and A. Riera.
Equilibration time scales in closed many-body
quantum systems. New J. Phys., 20:033032,
2018. DOI: 10.1088/1367-2630/aab03b.
[18] P. Reimann. Transportless equilibration in iso-
lated many-body quantum systems. New J.
Phys., 21:053014, 2019. DOI: 10.1088/1367-
2630/ab1a63.
[19] E. P. Wigner. Characteristic vectors of bordered
matrices with infinite dimensions. Ann. Math.,
62:548–564, 1955. DOI: 10.2307/1970079.
[20] E. P. Wigner. Characteristic vectors of bordered
matrices with infinite dimensions II. Ann. Math.,
65:203–207, 1957. DOI: 10.2307/1969956.
[21] E. P. Wigner. On the distribution of the roots
of certain symmetric matrices. Ann. Math., 67:
325–327, 1958. DOI: 10.2307/1970008.
[22] M. L. Mehta. Random Matrices. Elsevier, Ams-
terdam, 3rd edition, 2004.
[23] L. F. Santos and E. J. Torres-Herrera. Ana-
lytical expressions for the evolution of many-
body quantum systems quenched far from equi-
librium. AIP Conf. Proc., 1912:020015, 2017.
DOI: 10.1063/1.5016140.
[24] E. J. Torres-Herrera, A. M. García-García, and
L. F. Santos. Generic dynamical features of
quenched interacting quantum systems: Survival
probability, density imbalance, and out-of-time-
ordered correlator. Phys. Rev. B, 97:060303,
2018. DOI: 10.1103/PhysRevB.97.060303.
[25] L. F. Santos and E. J. Torres-Herrera. Nonequi-
librium many-body quantum dynamics: From
full random matrices to real systems. In
F. Binder, L. Correa, C. Gogolin, J. Anders,
and G. Adesso, editors, Thermodynamics in
the Quantum Regime. Fundamental Theories of
Physics, pages 457–479. Springer, 2018. DOI:
10.1007/978-3-319-99046-0_19.
[26] E. J. Torres-Herrera, J. Karp, M. Távora, and
L. F. Santos. Realistic many-body quantum sys-
tems vs. full random matrices: Static and dy-
namical properties. Entropy, 18:1–20, 2016. DOI:
10.3390/e18100359.
[27] J. B. French and S. S. M. Wong. Validity of
random matrix theories for many-particle sys-
tems. Phys. Lett. B, 33:449–452, 1970. DOI:
10.1016/0370-2693(70)90213-3.
[28] O. Bohigas and J. Flores. Two-body ran-
dom Hamiltonian and level density. Phys.
Lett. B, 34:261–263, 1971. DOI: 10.1016/0370-
2693(71)90598-3.
[29] V. K. B. Kota, A. Relaño, J. Retamosa, and
M. Vyas. Thermalization in the two-body ran-
dom ensemble. J. Stat. Mech., 2011:P10028,
2011. DOI: 10.1088/1742-5468/2011/10/P10028.
[30] V. V. Flambaum and F. M. Izrailev. Entropy
production and wave packet dynamics in the
fock space of closed chaotic many-body sys-
tems. Phys. Rev. E, 64:036220, 2001. DOI:
10.1103/PhysRevE.64.036220.
[31] F. Borgonovi, F. M. Izrailev, and L. F. Santos.
Exponentially fast dynamics of chaotic many-
Accepted in Quantum 2020-05-21, click title to verify. Published under CC-BY 4.0. 16