tion using electron spins separated by 1.3
kilometres, Nature 526, 682 (2015).
[2] L. K. Shalm, E. Meyer-Scott, B. G. Chris-
tensen, P. Bierhorst, M. A. Wayne, M. J.
Stevens, T. Gerrits, S. Glancy, D. R. Hamel,
M. S. Allman, K. J. Coakley, S. D. Dyer,
C. Hodge, A. E. Lita, V. B. Verma, C.
Lambrocco, E. Tortorici, A. L. Migdall, Y.
Zhang, D. R. Kumor, W. H. Farr, F. Mar-
sili, M. D. Shaw, J. A. Stern, C. Abell´an,
W. Amaya, V. Pruneri, T. Jennewein, M.
W. Mitchell, P. G. Kwiat, J. C. Bienfang,
R. P. Mirin, E. Knill, S. W. Nam, Strong
Loophole-Free Test of Local Realism, Phys.
Rev. Lett. 115, 250402 (2015).
[3] M. Giustina, M. A. M. Versteegh,
S. Wengerowsky, J. Handsteiner, A.
Hochrainer, K. Phelan, F. Steinlechner,
J. Kofler, J-
˚
A. Larsson, C. Abell´an, W.
Amaya, V. Pruneri, M. W. Mitchell,
J. Beyer, T. Gerrits, A. E. Lita, L. K.
Shalm, S. W. Nam, T. Scheidl, R. Ursin,
B. Wittmann, A. Zeilinger, Significant-
Loophole-Free Test of Bell’s Theorem with
Entangled Photons, Phys. Rev. Lett. 115,
250401 (2015).
[4] W. Rosenfeld, D. Burchardt, R. Garthoff,
K. Redeker, N. Ortegel, M. Rau, H. We-
infurter, Event-Ready Bell Test Using En-
tangled Atoms Simultaneously Closing De-
tection and Locality Loopholes, Phys. Rev.
Lett. 119, 010402 (2017).
[5] J.S. Bell, On the Einstein Podolsky Rosen
paradox, Physics 1, 195 (1964).
[6] R. Colbeck, Quantum And Relativistic Pro-
tocols For Secure Multi-Party Computation,
Ph.D. thesis, (2009).
[7] S. Pironio, A. Ac´ın, S. Massar, A. Boyer de
la Giroday, D. N. Matsukevich, P. Maunz,
S. Olmschenk, D. Hayes, L. Luo, T. A. Man-
ning, C. Monroe, Random numbers certified
by Bell’s theorem, Nature 464, 1021 (2010).
[8] B. G. Christensen, K. T. McCusker, J. B. Al-
tepeter, B. Calkins, T. Gerrits, A. E. Lita,
A. Miller, L. K. Shalm, Y. Zhang, S. W.
Nam, N. Brunner, C. C. W. Lim, N. Gisin,
and P. G. Kwiat, Detection-Loophole-Free
Test of Quantum Nonlocality, and Applica-
tions, Phys. Rev. Lett. 111, 130406 (2013).
[9] Y. Liu, X. Yuan, M-H. Li, W. Zhang,
Q. Zhao, J. Zhong, Y. Cao, Y-H. Li, L-
K. Chen, H. Li, T. Peng, Y-A. Chen, C-
Z. Peng, S-C. Shi, Z. Wang, L. You, X.
Ma, J. Fan, Q. Zhang, J-W. Pan, High-
Speed Device-Independent Quantum Ran-
dom Number Generation without a Detec-
tion Loophole, Phys. Rev. Lett. 120, 010503
(2018).
[10] Y. Liu, Q. Zhao, M-H. Li, J-Y. Guan, Y.
Zhang, B. Bai, W. Zhang, W-Z. Liu, C.
Wu, X. Yuan, H. Li, W. J. Munro, Z.
Wang, L. You, J. Zhang, X. Ma, J. Fan,
Q. Zhang, J-W. Pan, Device-independent
quantum random-number generation, Na-
ture 562, 548 (2018).
[11] P. Bierhorst, E. Knill, S. Glancy, Y. Zhang,
A. Mink, S. Jordan, A. Rommal, Y-K.
Liu, B. Christensen, S. W. Nam, M. J.
Stevens, L. K. Shalm, Experimentally Gen-
erated Randomness Certified by the Impossi-
bility of Superluminal Signals, Nature 556,
223 (2018).
[12] L. Shen, J. Lee, L. P. Thinh, J-D. Ban-
cal, A. Cer`e, A. Lamas-Linares, A. Lita, T.
Gerrits, S. W. Nam, V. Scarani, C. Kurt-
siefer Randomness Extraction from Bell Vi-
olation with Continuous Parametric Down-
Conversion, Phys. Rev. Lett. 121, 150402
(2018).
[13] J. F. Clauser, M. A. Horne, A. Shimony,
R.A. Holt, Proposed Experiment to Test Lo-
cal Hidden-Variable Theories, Phys. Rev.
Lett. 23, 880 (1969).
[14] S. Popescu, D. Rohrlich, Which states vi-
olate Bell’s inequality maximally?, Phys.
Lett. A 169, 411 (1992).
[15] M. McKague, T. H. Yang, V. Scarani, Ro-
bust self-testing of the singlet, J. Phys. A:
Math. Theor. 45, 455304 (2012).
[16] D. Mayers, A. Yao, Quantum Cryptogra-
phy with Imperfect Apparatus, Proceedings
of the 39th IEEE Conference on Foundations
of Computer Science, 1998, page 503, see
also Self testing quantum apparatus, Quant.
Inf. Comput. 4, 273 (2004).
[17] M. McKague, Interactive Proofs for BQP
via Self-Tested Graph States, Theory of
Computing, 12, 3 (2016).
Accepted in Quantum 2020-02-25, click title to verify. Published under CC-BY 4.0. 7