
[14] N. Wyderka and O. Gühne, Characterizing
quantum states via sector lengths, e-print
arXiv:1905.06928 (2019).
[15] C. Eltschka and J. Siewert, Joint
Schmidt-type decomposition for two bipartite
pure states, Phys. Rev. A 101, 022302
(2020).
[16] J. Schlienz and G. Mahler, Description of
entanglement, Phys. Rev. A 52, 4396 (1995).
[17] J. Schlienz and G. Mahler, The maximal
entangled three-particle state is unique,
Phys. Lett. A 224, 39 (1996).
[18] M. Żukowski and C. Brukner, Bell’s theorem
for general N-qubit states, Phys. Rev. Lett.
88, 210401 (2002).
[19] M. Teodorescu-Frumosu and G. Jaeger,
Quantum Lorentz-group invariants of
n-qubit systems, Phys. Rev. A 67, 052305
(2003).
[20] H. Aschauer, J. Calsamiglia, M. Hein,
and H.J. Briegel, Local invariants for
multi-partite entangled states allowing for
a simple entanglement criterion, Quantum
Inf. Comput. 4, 383 (2004); journal link;
arXiv.org link.
[21] A. J. Scott, Multipartite entanglement,
quantum error correcting codes, and
entangling power of quantum evolutions,
Phys. Rev. A 69, 052330 (2004).
[22] J.I. de Vicente, Separability criteria based on
the Bloch representation of density matrices,
Quantum Inf. Comput. 7, 624 (2007);
journal link; arXiv.org link.
[23] J.I. de Vicente, Further results on
entanglement detection and quantification
from the correlation matrix criterion, J.
Phys. A: Math. Theor. 41, 065309 (2008).
[24] P. Badziag, C. Brukner, W. Laskowski, T.
Paterek, and M. Żukowski, Experimentally
Friendly Geometrical Criteria for
Entanglement, Phys. Rev. Lett. 100,
140403 (2008).
[25] W. Laskowski, M. Markiewicz, T. Paterek,
and M. Żukowski, Correlation-tensor
criteria for genuine multiqubit entanglement,
Phys. Rev. A 84, 062305 (2011).
[26] J.I. de Vicente and M. Huber, Multipartite
entanglement detection from correlation
tensors, Phys. Rev. A 84, 062306 (2011).
[27] We will use the term “k-sector length”
instead of “squared k-sector length” following
Ref. [6]. In the present context this does not
lead to confusion.
[28] One may imagine very different correlation
quantifiers, e.g., D. Girolami, T. Tufarelli,
and C.E. Susa, Quantifying Genuine
Multipartite Correlations and their Pattern
Complexity, Phys. Rev. Lett. 119, 140505
(2017).
[29] J. Kaszlikowski, A. Sen De, U. Sen, V.
Vedral, A. Winter, Quantum Correlation
Without Classical Correlations, Phys. Rev.
Lett. 101, 070502 (2008).
[30] C. Schwemmer, L. Knips, M.C. Tran, A.
de Rosier, W. Laskowski, T. Paterek, and
H. Weinfurter, Genuine Multipartite
Entanglement without Multipartite
Correlations, Phys. Rev. Lett. 114, 180501
(2015).
[31] M.C. Tran, M. Zuppardo, A. de Rosier,
L. Knips, W. Laskowski, T. Paterek,
and H. Weinfurter, Genuine N -partite
entanglement without N-partite correlation
functions, Phys. Rev. A 95, 062331 (2017).
[32] W. Klobus, W. Laskowski, T. Paterek,
M. Wiesniak, and H. Weinfurter,
Higher dimensional entanglement without
correlations, Eur. Phys. J. D 73, 29 (2019).
[33] This relation corresponds to a special case
of the quantum MacWilliams identity, cf.
Ref. [11].
[34] V. Coffman, J. Kundu, and W.K. Wootters,
Distributed entanglement, Phys. Rev. A 61,
052306 (2000).
[35] P. Rungta, V. Buzek, C.M. Caves, M.
Hillery, and G.J. Milburn, Universal state
inversion and concurrence in arbitrary
dimensions, Phys. Rev. A 64, 042315 (2001).
[36] W. Hall, Multipartite reduction criteria for
separability, Phys. Rev. A 72, 022311 (2005).
[37] M. Lewenstein, R. Augusiak, D. Chruściński,
S. Rana, and J. Samsonowicz, Sufficient
separability criteria and linear maps, Phys.
Rev. A 93, 042335 (2016).
Accepted in Quantum 2020-02-03, click title to verify. Published under CC-BY 4.0. 10