
2010. URL http://iopscience.iop.org/
article/10.1209/0295-5075/89/20003.
[51] V. Cavina, A. Mari, A. Carlini, and V. Gio-
vannetti. Optimal thermodynamic control
in open quantum systems. Phys. Rev. A,
98:012139, Jul 2018. DOI: 10.1103/Phys-
RevA.98.012139. URL https://link.aps.
org/doi/10.1103/PhysRevA.98.012139.
[52] Paul Menczel, Tuomas Pyhäranta, Chris-
tian Flindt, and Kay Brandner. Two-stroke
optimization scheme for mesoscopic refrig-
erators. Phys. Rev. B, 99:224306, Jun 2019.
DOI: 10.1103/PhysRevB.99.224306. URL
https://link.aps.org/doi/10.1103/
PhysRevB.99.224306.
[53] S. Deffner. Optimal control of a qubit in
an optical cavity. Journal of Physics
B: Atomic, Molecular and Optical
Physics, 47(14):145502, 2014. URL
http://iopscience.iop.org/article/
10.1088/0953-4075/47/14/145502/meta.
[54] Vasco Cavina, Andrea Mari, Alberto Car-
lini, and Vittorio Giovannetti. Vari-
ational approach to the optimal con-
trol of coherently driven, open quantum
system dynamics. Phys. Rev. A, 98:
052125, Nov 2018. DOI: 10.1103/Phys-
RevA.98.052125. URL https://link.aps.
org/doi/10.1103/PhysRevA.98.052125.
[55] M. V. S. Bonança and S. Deffner. Opti-
mal driving of isothermal processes close
to equilibrium. The Journal of chemi-
cal physics, 140(24):244119, 2014. URL
https://aip.scitation.org/doi/abs/
10.1063/1.4885277?journalCode=jcp.
[56] G. M. Rotskoff and G. E. Crooks. Op-
timal control in nonequilibrium systems:
dynamic Riemannian geometry of the Ising
model. Phys. Rev. E, 92:060102, Dec 2015.
DOI: 10.1103/PhysRevE.92.060102. URL
https://link.aps.org/doi/10.1103/
PhysRevE.92.060102.
[57] T. R. Gingrich, G. M. Rotskoff, G. E.
Crooks, and P. L. Geissler. Near-
optimal protocols in complex nonequi-
librium transformations. Proceedings
of the National Academy of Sciences,
113(37):10263–10268, aug 2016. DOI:
10.1073/pnas.1606273113. URL https:
//doi.org/10.1073/pnas.1606273113.
[58] G. M. Rotskoff, G. E. Crooks, and
E. Vanden-Eijnden. Geometric approach
to optimal nonequilibrium control: min-
imizing dissipation in nanomagnetic spin
systems. Phys. Rev. E, 95:012148, Jan 2017.
DOI: 10.1103/PhysRevE.95.012148. URL
https://link.aps.org/doi/10.1103/
PhysRevE.95.012148.
[59] Harry JD Miller, Matteo Scandi, Janet An-
ders, and Martí Perarnau-Llobet. Work fluc-
tuations in slow processes: quantum signa-
tures and optimal control. arXiv preprint
arXiv:1905.07328, 2019.
[60] Y. Guryanova, S. Popescu, A. J. Short,
R. Silva, and P. Skrzypczyk. Thermodynam-
ics of quantum systems with multiple con-
served quantities. Nature communications,
7:ncomms12049, 2016. URL https://www.
nature.com/articles/ncomms12049/.
[61] M. Lostaglio, D. Jennings, and T. Rudolph.
Thermodynamic resource theories,
non-commutativity and maximum en-
tropy principles. New Journal of
Physics, 19(4):043008, 2017. URL
http://iopscience.iop.org/article/
10.1088/1367-2630/aa617f/meta.
[62] N. Y. Halpern, P. Faist, J. Oppenheim, and
A. Winter. Microcanonical and resource-
theoretic derivations of the thermal state
of a quantum system with noncommut-
ing charges. Nature communications, 7:
12051, 2016. URL https://www.nature.
com/articles/ncomms12051.
[63] M. Perarnau-Llobet, A. Riera, R. Gal-
lego, H. Wilming, and J. Eisert. Work
and entropy production in generalised
Gibbs ensembles. New Journal of
Physics, 18(12):123035, 2016. URL
http://iopscience.iop.org/article/
10.1088/1367-2630/aa4fa6/meta.
[64] André M. Timpanaro, Giacomo Guarnieri,
John Goold, and Gabriel T. Landi. Ther-
modynamic uncertainty relations from
exchange fluctuation theorems. Phys.
Rev. Lett., 123:090604, Aug 2019. DOI:
10.1103/PhysRevLett.123.090604. URL
https://link.aps.org/doi/10.1103/
PhysRevLett.123.090604.
[65] M. F. Gelin and M. Thoss. Thermody-
namics of a subensemble of a canonical
ensemble. Phys. Rev. E, 79:051121, May
2009. DOI: 10.1103/PhysRevE.79.051121.
12