
[14] JP Gaebler, TR Tan, Y Lin, Y Wan, R Bowler, AC Keith, S Glancy, K Coak-
ley, E Knill, D Leibfried, et al. High-Fidelity Universal Gate Set for Be 9+
Ion Qubits. Physical Review Letters, 117(6):060505, 2016. DOI: 10.1103/Phys-
RevLett.117.060505.
[15] Mercedes Gimeno-Segovia, Pete Shadbolt, Dan E Browne, and Terry Rudolph. From
Three-Photon Greenberger-Horne-Zeilinger States to Ballistic Universal Quantum
Computation. Physical review letters, 115(2):020502, 2015. DOI: 10.1103/Phys-
RevLett.115.020502.
[16] D. Gottesman and I. L. Chuang. Demonstrating the viability of universal quantum
computation using teleportation and single-qubit operations. Nature, 402(6760):390–
393, 1999. DOI: 10.1038/46503.
[17] D. Gross, J. Eisert, N. Schuch, and D. Perez-Garcia. Measurement-based quantum
computation beyond the one-way model. Phys. Rev. A, 76:052315, Nov 2007. DOI:
10.1103/PhysRevA.76.052315.
[18] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A Complete Axiomatisation
of the ZX-calculus for Clifford+T Quantum Mechanics. In Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, pages 559–568. ACM,
2018. DOI: 10.1145/3209108.3209131.
[19] Aleks Kissinger and John van de Wetering. Pyzx: Large scale automated diagram-
matic reasoning. arXiv preprint arXiv:1904.04735, 2019.
[20] Aleks Kissinger and Vladimir Zamdzhiev. Quantomatic: A proof assistant for dia-
grammatic reasoning. In International Conference on Automated Deduction, pages
326–336. Springer, 2015. DOI: 10.1007/978-3-319-21401-6˙22.
[21] Damian Markham and Elham Kashefi. Entanglement, Flow and Classical Simulata-
bility in Measurement Based Quantum Computation, pages 427–453. Lecture Notes in
Computer Science. Springer International Publishing, 2014. ISBN 978-3-319-06879-4.
DOI: 10.1007/978-3-319-06880-0˙22.
[22] Jacob Miller and Akimasa Miyake. Hierarchy of universal entanglement in 2D
measurement-based quantum computation. npj Quantum Information, 2:16036, 2016.
DOI: 10.1038/npjqi.2016.36.
[23] Sam Morley-Short, Sara Bartolucci, Mercedes Gimeno-Segovia, Pete Shadbolt, Hugo
Cable, and Terry Rudolph. Physical-depth architectural requirements for generating
universal photonic cluster states. Quantum Science and Technology, 3(1):015005,
2017. DOI: 10.1088/2058-9565/aa913b.
[24] K. F. Ng and Q. Wang. A universal completion of the ZX-calculus. ArXiv e-prints,
jun 2017.
[25] JS Otterbach, R Manenti, N Alidoust, A Bestwick, M Block, B Bloom, S Caldwell,
N Didier, E Schuyler Fried, S Hong, et al. Unsupervised machine learning on a hybrid
quantum computer. arXiv preprint arXiv:1712.05771, 2017.
[26] R. Penrose. Applications of negative dimensional tensors. In Combinatorial Mathe-
matics and its Applications, pages 221–244. Academic Press, 1971.
[27] R. Raussendorf, D.E. Browne, and H.J. Briegel. Measurement-based quantum com-
putation on cluster states. Physical Review A, 68(2):22312, 2003. ISSN 1094-1622.
DOI: 10.1103/PhysRevA.68.022312.
[28] Robert Raussendorf and Hans J. Briegel. A One-Way Quantum Computer. Phys.
Rev. Lett., 86:5188–5191, May 2001. DOI: 10.1103/PhysRevLett.86.5188.
[29] Yaoyun Shi. Both Toffoli and controlled-NOT need little help to do universal quantum
computation. arXiv preprint quant-ph/0205115, 2002.
Accepted in Quantum 2019-04-04, click title to verify 20