
the Yale HPC team. We acknowledge support
from ARL-CDQI, ARO (W911NF-14-1-0011,
W911NF-14-1-0563), ARO MURI (W911NF-16-
1-0349 ), AFOSR MURI (FA9550-14-1-0052,
FA9550-15-1-0015), the Alfred P. Sloan Founda-
tion (BR2013-049), and the Packard Foundation
(2013-39273).
References
[1] Julia Cramer, Norbert Kalb, M Adriaan
Rol, Bas Hensen, Machiel S Blok, Matthew
Markham, Daniel J Twitchen, Ronald Han-
son, and Tim H Taminiau. Repeated
quantum error correction on a continu-
ously encoded qubit by real-time feedback.
Nature communications, 7, 2016. DOI:
10.1038/ncomms11526.
[2] Nissim Ofek, Andrei Petrenko, Reinier
Heeres, Philip Reinhold, Zaki Leghtas,
Brian Vlastakis, Yehan Liu, Luigi Frunzio,
SM Girvin, L Jiang, et al. Extending the
lifetime of a quantum bit with error cor-
rection in superconducting circuits. Nature,
536(7617):441–445, 2016. DOI: 10.1038/na-
ture18949.
[3] Daniel Gottesman and Isaac L Chuang.
Demonstrating the viability of universal
quantum computation using teleportation
and single-qubit operations. Nature, 402
(6760):390–393, 1999. DOI: 10.1038/46503.
[4] C Monroe, R Raussendorf, A Ruthven,
KR Brown, P Maunz, L-M Duan, and J Kim.
Large-scale modular quantum-computer ar-
chitecture with atomic memory and pho-
tonic interconnects. Physical Review A,
89(2):022317, 2014. DOI: 10.1103/phys-
reva.89.022317.
[5] A Narla, S Shankar, M Hatridge, Z Legh-
tas, KM Sliwa, E Zalys-Geller, SO Mund-
hada, W Pfaff, L Frunzio, RJ Schoelkopf,
et al. Robust concurrent remote entangle-
ment between two superconducting qubits.
Physical Review X, 6(3):031036, 2016. DOI:
10.1103/physrevx.6.031036.
[6] D Hucul, IV Inlek, G Vittorini, C Crocker,
S Debnath, SM Clark, and Cl Monroe. Mod-
ular entanglement of atomic qubits using
photons and phonons. Nature Physics, 11
(1):37–42, 2015. DOI: 10.1038/nphys3150.
[7] Ramil Nigmatullin, Christopher J Ballance,
Niel de Beaudrap, and Simon C Ben-
jamin. Minimally complex ion traps as
modules for quantum communication and
computing. New Journal of Physics, 18
(10):103028, 2016. DOI: 10.1088/1367-
2630/18/10/103028.
[8] Andreas Reiserer, Norbert Kalb, Machiel S
Blok, Koen JM van Bemmelen, Tim H
Taminiau, Ronald Hanson, Daniel J
Twitchen, and Matthew Markham. Ro-
bust quantum-network memory using
decoherence-protected subspaces of nuclear
spins. Physical Review X, 6(2):021040, 2016.
DOI: 10.1103/physrevx.6.021040.
[9] Naomi H Nickerson, Ying Li, and Simon C
Benjamin. Topological quantum comput-
ing with a very noisy network and local
error rates approaching one percent. Na-
ture communications, 4:1756, 2013. DOI:
10.1038/ncomms2773.
[10] W Dür, H-J Briegel, JI Cirac, and P Zoller.
Quantum repeaters based on entanglement
purification. Physical Review A, 59(1):169,
1999. DOI: 10.1103/physreva.59.169.
[11] Jian-Wei Pan, Christoph Simon, Časlav
Brukner, and Anton Zeilinger. Entangle-
ment purification for quantum communica-
tion. Nature, 410(6832):1067–1070, 2001.
DOI: 10.1038/35074041.
[12] L Childress, JM Taylor, Anders Sønd-
berg Sørensen, and Mikhail D Lukin.
Fault-tolerant quantum repeaters with mini-
mal physical resources and implementations
based on single-photon emitters. Physi-
cal Review A, 72(5):052330, 2005. DOI:
10.1103/physreva.72.052330.
[13] L Jiang, JM Taylor, and MD Lukin. Fast
and robust approach to long-distance quan-
tum communication with atomic ensembles.
Physical Review A, 76(1):012301, 2007. DOI:
10.1103/physreva.76.012301.
[14] Naomi H Nickerson, Joseph F Fitzsimons,
and Simon C Benjamin. Freely scalable
quantum technologies using cells of 5-to-50
qubits with very lossy and noisy photonic
links. Physical Review X, 4(4):041041, 2014.
DOI: 10.1103/physrevx.4.041041.
[15] DL Moehring, P Maunz, S Olmschenk,
KC Younge, DN Matsukevich, L-M Duan,
and C Monroe. Entanglement of single-
atom quantum bits at a distance. Nature,
Accepted in Quantum 2019-02-13, click title to verify 8