
and N. Sangouard. Macroscopic quantum
states: Measures, fragility, and implementa-
tions. Rev. Mod. Phys., 90:025004, 2018. DOI:
10.1103/RevModPhys.90.025004.
[18] W. Dür, C. Simon, and J. I. Cirac. Effective
size of certain macroscopic quantum superposi-
tions. Phys. Rev. Lett., 89:210402, 2002. DOI:
10.1103/PhysRevLett.89.210402.
[19] P. Sekatski, N. Sangouard, and N. Gisin. Size of
quantum superpositions as measured with clas-
sical detectors. Phys. Rev. A, 89:012116, 2014.
DOI: 10.1103/physreva.89.012116.
[20] P. Sekatski, N. Gisin, and N. Sangouard.
How difficult is it to prove the quantum-
ness of macroscropic states? Phys. Rev.
Lett., 113:090403, 2014. DOI: 10.1103/phys-
revlett.113.090403.
[21] J. I. Korsbakken, K. B. Whaley, J. Dubois,
and J. I. Cirac. Measurement-based measure
of the size of macroscopic quantum superposi-
tions. Phys. Rev. A, 75:042106, 2007. DOI:
10.1103/physreva.75.042106.
[22] C. Park and H. Jeong. Disappearance of
macroscopic superpositions in perfectly isolated
systems by thermalization processes. arXiv
preprint arXiv:1606.07213v2, 2016.
[23] F. Fröwis, M. van den Nest, and W. Dür. Cer-
tifiability criterion for large-scale quantum sys-
tems. New J. Phys., 15:113011, 2013. DOI:
10.1088/1367-2630/15/11/113011.
[24] F. Fröwis and W. Dür. Measures of macro-
scopicity for quantum spin systems. New J.
Phys., 14:093039, 2012. DOI: 10.1088/1367-
2630/14/9/093039.
[25] A. Shimizu and T. Miyadera. Stability of quan-
tum states of finite macroscopic systems against
classical noises, perturbations from environ-
ments, and local measurements. Phys. Rev.
Lett., 89(27):270403, 2002. DOI: 10.1103/phys-
revlett.89.270403.
[26] H. Cramér. Mathematical Methods of Statis-
tics. Princeton University Press, 1945. DOI:
10.1515/9781400883868.
[27] R. Demkowicz-Dobrzański, J. Kołodyński,
and M. Guţă. The elusive heisenberg
limit in quantum-enhanced metrology.
Nat. Commun., 3(1063):1063, 2012. DOI:
10.1038/ncomms2067.
[28] J. Kołodyński and R. Demkowicz-Dobrzański.
Efficient tools for quantum metrology with un-
correlated noise. New J. Phys., 15(7):073043,
2013. DOI: 10.1088/1367-2630/15/7/073043.
[29] P. Sekatski, M. Skotiniotis, J. Kołodyński, and
W. Dür. Quantum metrology with full and fast
quantum control. Quantum, 1:27, 2017. DOI:
10.22331/q-2017-09-06-27.
[30] R. Demkowicz-Dobrzański, J. Czajkowski, and
P. Sekatski. Adaptive quantum metrology un-
der general markovian noise. Phys. Rev. X, 7:
041009, 2017. DOI: 10.1103/physrevx.7.041009.
[31] M. Skotiniotis, W. Dür, and P. Sekatski. Macro-
scopic superpositions require tremendous mea-
surement devices. Quantum, 1:34, 2017. DOI:
10.22331/q-2017-11-21-34.
[32] V. Giovannetti, S. Lloyd, and L. Maccone.
Quantum-enhanced measurements: Beating
the standard quantum limit. Science, 306:1330–
1336, 2004. DOI: 10.1126/science.1104149.
[33] V. Giovannetti, S. Lloyd, and L. Mac-
cone. Quantum metrology. Phys. Rev.
Lett., 96:010401, 2006. DOI: 10.1103/phys-
revlett.96.010401.
[34] A. Shaji and C. M. Caves. Qubit metrology
and decoherence. Phys. Rev. A, 76:032111, sep
2007. DOI: 10.1103/physreva.76.032111.
[35] A. Fujiwara and H. Imai. A fibre bun-
dle over manifolds of quantum channels and
its application to quantum statistics. Jour-
nal of Physics A: Mathematical and Theoreti-
cal, 41(25):255304, 2008. DOI: 10.1088/1751-
8113/41/25/255304.
[36] B. M. Escher, R. L. de Matos Filho, and
L. Davidovich. General framework for esti-
mating the ultimate precision limit in noisy
quantum-enhanced metrology. Nat Phys, 7:406–
411, 2011. DOI: 10.1038/nphys1958.
[37] W. Dür, M. Skotiniotis, F. Fröwis, and
B. Kraus. Improved quantum metrology us-
ing quantum error correction. Phys. Rev.
Lett., 112:080801, 2014. DOI: 10.1103/phys-
revlett.112.080801.
[38] I. R. Shafarevich and A. Remizov. Linear Alge-
bra and Geometry. Springer Science & Business
Media, 2012. DOI: 10.1007/978-3-642-30994-6.
[39] CVX Research. CVX: Matlab software for disci-
plined convex programming, version 2.0. http:
//cvxr.com/cvx, 2012.
[40] M. Grant and S. Boyd. Graph implementations
for nonsmooth convex programs. In V. Blon-
del, S. Boyd, and H. Kimura, editors, Re-
cent Advances in Learning and Control, Lec-
ture Notes in Control and Information Sciences,
pages 95–110. Springer-Verlag Limited, 2008.
DOI: 10.1007/978-1-84800-155-8_7. http://
stanford.edu/~boyd/graph_dcp.html.
Accepted in Quantum 2019-01-10, click title to verify 12