
[4] A. Ac´ın, N. Brunner, N. Gisin, S. Massar, S. Piro-
nio, and V. Scarani, Phys. Rev. Lett. 98, 230501
(2007), arXiv:quant-ph/0702152.
[5] R. Colbeck, Quantum And Relativistic Pro-
tocols For Secure Multi-Party Computation,
Ph.D. thesis, University of Cambridge (2006),
arXiv:0911.3814 [quant-ph].
[6] S. Pironio, A. Ac´ın, S. Massar, A. Boyer de
La Giroday, D. N. Matsukevich, P. Maunz,
S. Olmschenk, D. Hayes, L. Luo, T. A. Man-
ning, and C. Monroe, Nature 464, 1021 (2010),
arXiv:0911.3427 [quant-ph].
[7] R. Colbeck and A. Kent, J. Phys. A: Math. Theor.
44, 095305 (2011), arXiv:1011.4474 [quant-ph].
[8] R. Renner, N. Gisin, and B. Kraus, Phys. Rev. A
72, 012332 (2005), arXiv:quant-ph/0502064.
[9] R. Renner, Security of Quantum Key Dis-
tribution, Ph.D. thesis, ETH Zurich (2005),
arXiv:quant-ph/0512258.
[10] L. Masanes, S. Pironio, and A. Ac´ın, Nat. Com-
mun. 2, 238 (2011), arXiv:1009.1567 [quant-ph].
[11] S. Pironio and S. Massar, Phys. Rev. A 87,
012336 (2013), arXiv:1111.6056 [quant-ph].
[12] S. Pironio, L. Masanes, A. Leverrier, and A. Ac´ın,
Phys. Rev. X 3, 031007 (2013), arXiv:1211.1402
[quant-ph].
[13] R. Arnon-Friedman, F. Dupuis, O. Fawzi,
R. Renner, and T. Vidick, Nat. Commun. 9, 459
(2018).
[14] M. Navascu´es, S. Pironio, and A. Ac´ın, Phys.
Rev. Lett. 98, 010401 (2007), arXiv:quant-
ph/0607119.
[15] O. Nieto Silleras, S. Pironio, and J. Silman,
New J. Phys. 16, 013035 (2014), arXiv:1309.3930
[quant-ph].
[16] J.-D. Bancal, L. Sheridan, and V. Scarani, New J.
Phys. 16, 033011 (2014), arXiv:1309.3894 [quant-
ph].
[17] J. F. Clauser, M. A. Horne, A. Shimony, and
R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).
[18] J. Kaniewski and S. Wehner, New J. Phys. 18,
055004 (2016), arXiv:1601.06752 [quant-ph].
[19] J. Barrett, A. Kent, and S. Pironio, Phys.
Rev. Lett. 97, 170409 (2006), arXiv:quant-
ph/0605182.
[20] L. Aolita, R. Gallego, A. Cabello, and
A. Ac´ın, Phys. Rev. Lett. 108, 100401 (2012),
arXiv:1109.3163 [quant-ph].
[21] N. D. Mermin, Phys. Rev. Lett. 65, 1838 (1990).
[22] C. Bamps and S. Pironio, Phys. Rev. A 91,
052111 (2015), arXiv:1504.06960 [quant-ph].
[23] M. Hillery, V. Buˇzek, and A. Berthiaume,
Phys. Rev. A 59, 1829 (1999), arXiv:quant-
ph/9806063.
[24] D. M. Greenberger, M. A. Horne, A. Shimony,
and A. Zeilinger, Am. J. Phys. 58, 1131 (1990).
[25] J.-D. Bancal, N. Gisin, Y.-C. Liang, and S. Piro-
nio, Phys. Rev. Lett. 106, 250404 (2011),
arXiv:1102.0197 [quant-ph].
[26] G. Svetlichny, Phys. Rev. D 35, 3066 (1987).
[27] V. Scarani and N. Gisin, J. Phys. A: Math. Gen.
34, 6043 (2001), arXiv:quant-ph/0103068.
[28] R. F. Werner and M. M. Wolf, Phys. Rev. A 64,
032112 (2001), arXiv:quant-ph/0102024.
[29] “SDPA official page”, http://sdpa.
sourceforge.net/ (2011).
[30] M. Nakata, in 2010 IEEE International Sym-
posium on Computer-Aided Control System
Design (IEEE, 2010) pp. 29–34.
[31] “GitHub - ewoodhead/npa-hierarchy”, https:
//github.com/ewoodhead/npa-hierarchy
(2018).
[32] A. Ac´ın, S. Massar, and S. Pironio, Phys.
Rev. Lett. 108, 100402 (2012), arXiv:1107.2754
[quant-ph].
[33] A. Meurer, C. P. Smith, M. Paprocki, O.
ˇ
Cert´ık,
S. B. Kirpichev, M. Rocklin, A. Kumar,
S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake,
S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi,
H. Gupta, S. Vats, F. Johansson, F. Pedre-
gosa, M. J. Curry, A. R. Terrel, v. Rouˇcka,
A. Saboo, I. Fernando, S. Kulal, R. Cimrman,
and A. Scopatz, PeerJ Computer Science 3, e103
(2017).
[34] S. Gogioso and W. Zeng, “Generalised
Mermin-type non-locality arguments”, (2017),
arXiv:1702.01772 [quant-ph].
[35] R. Ramanathan and P. Mironowicz, “Trade-offs
in multi-party Bell inequality violations in qubit
networks”, (2017), arXiv:1704.03790 [quant-ph].
[36] A. Karlsson, M. Koashi, and N. Imoto, Phys. Rev.
A 59, 162 (1999).
[37] K. T. Goh, J. Kaniewski, E. Wolfe, T. V´ertesi,
X. Wu, Y. Cai, Y.-C. Liang, and V. Scarani, Phys.
Rev. A 97, 022104 (2018), arXiv:1710.05892
[quant-ph].
[38] J. Silman, S. Pironio, and S. Massar, Phys.
Rev. Lett. 110, 100504 (2013), arXiv:1211.5921
[quant-ph].
[39] S. Pironio, J.-D. Bancal, and V. Scarani, J.
Phys. A: Math. Theor. 44, 065303 (2011),
arXiv:1101.2477 [quant-ph].
A No-signalling bounds
The main text gave tight bounds on the guessing prob-
ability assuming all the measurements are performed
on a quantum system. The tightest bound that can be
derived for the local guessing probability using only
the no-signalling constraints is
P
g
(A
1
|E) ≤
3
2
−
1
8
|M| −
1
8
|M
0
|. (106)
Accepted in Quantum 2018-08-02, click title to verify 11