tum memory. Journal of Mathematical
Physics, 43(9):4452–4505, 2002.
[12] Guillaume Duclos-Cianci and David Poulin.
Fast decoders for topological quantum
codes. Physical review letters, 104
(5):050504, 2010. DOI: 10.1103/Phys-
RevLett.104.050504.
[13] Guillaume Duclos-Cianci and David Poulin.
Fault-tolerant renormalization group de-
coder for abelian topological codes. Quan-
tum Information & Computation, 14(9-10):
721–740, 2014.
[14] Kasper Duivenvoorden, Nikolas P Breuck-
mann, and Barbara M Terhal. Renormal-
ization group decoder for a four-dimensional
toric code. arXiv preprint arXiv:1708.09286,
2017.
[15] Brendan J Frey and David JC MacKay.
A revolution: Belief propagation in graphs
with cycles. Advances in neural information
processing systems, pages 479–485, 1998.
[16] Gabriel Goh. Why momentum really works.
Distill, 2017. DOI: 10.23915/distill.00006.
[17] Ian Goodfellow, Yoshua Bengio, and Aaron
Courville. Deep Learning. MIT Press, 2016.
[18] Matthew B Hastings. Decoding in hyper-
bolic spaces: Ldpc codes with linear rate
and efficient error correction. Quantum In-
formation and Computation, 14, 2014.
[19] Norman P Jouppi, Cliff Young, Nishant
Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bha-
tia, Nan Boden, Al Borchers, et al. In-
datacenter performance analysis of a tensor
processing unit. 44th International Sympo-
sium on Computer Architecture, 2017. DOI:
10.1145/3079856.3080246.
[20] Diederik Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. 3rd In-
ternational Conference for Learning Repre-
sentations, San Diego, 2015. URL https:
//arxiv.org/abs/1412.6980.
[21] Stefan Krastanov and Liang Jiang. Deep
neural network probabilistic decoder for sta-
bilizer codes. Scientific Reports, 7(1), sep
2017. DOI: 10.1038/s41598-017-11266-1.
[22] Stephen Marsland. Machine Learning: An
Algorithmic Perspective, Second Edition.
Chapman & Hall/CRC, 2nd edition, 2014.
ISBN 1466583282, 9781466583283.
[23] Paul A Merolla, John V Arthur, Ro-
drigo Alvarez-Icaza, Andrew S Cassidy, Jun
Sawada, Filipp Akopyan, Bryan L Jackson,
Nabil Imam, Chen Guo, Yutaka Nakamura,
et al. A million spiking-neuron integrated
circuit with a scalable communication net-
work and interface. Science, 345(6197):668–
673, 2014. DOI: 10.1126/science.1254642.
[24] Janardan Misra and Indranil Saha. Artificial
neural networks in hardware: A survey of
two decades of progress. Neurocomputing,
74(1–3):239 – 255, 2010. ISSN 0925-2312.
DOI: 10.1016/j.neucom.2010.03.021.
[25] Eliya Nachmani, Yair Be'ery, and David
Burshtein. Learning to decode linear
codes using deep learning. In 2016 54th
Annual Allerton Conference on Commu-
nication, Control, and Computing (Aller-
ton). IEEE, sep 2016. DOI: 10.1109/aller-
ton.2016.7852251.
[26] Michael A. Nielsen. Neural Networks and
Deep Learning. Determination Press, 2015.
[27] Genevieve B Orr and Klaus-Robert M¨uller.
Neural networks: tricks of the trade.
Springer, 2003.
[28] Fernando Pastawski. Quantum memory: de-
sign and applications. PhD thesis, LMU
Munich, 2012. URL https://edoc.ub.
uni-muenchen.de/14703/.
[29] David Poulin and Yeojin Chung. On the
iterative decoding of sparse quantum codes.
Quantum Information and Computation, 8
(10):0987–1000, 2008.
[30] David Silver, Aja Huang, Chris J Maddi-
son, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser,
Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. Mastering the game
of go with deep neural networks and tree
search. Nature, 529(7587):484–489, 2016.
DOI: 10.1038/nature16961.
[31] David Silver, Julian Schrittwieser, Karen Si-
monyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker,
Matthew Lai, Adrian Bolton, Yutian Chen,
Timothy Lillicrap, Fan Hui, Laurent Sifre,
George van den Driessche, Thore Graepel,
and Demis Hassabis. Mastering the game of
go without human knowledge. Nature, 550
(7676):354–359, Oct 2017. ISSN 0028-0836.
DOI: 10.1038/nature24270.
[32] John M Sullivan. A crystalline approxima-
Accepted in Quantum 2018-05-04, click title to verify 14