
[8] David Gosset, Vadym Kliuchnikov, Michele Mosca, and Vincent Russo. An algorithm
for the t-count. Quant. Inf. & Comp., 14(15-16):1261–1276, 2014.
[9] Neil J Ross and Peter Selinger. Optimal ancilla-free clifford+ t approximation of
z-rotations. Quant. Inf. and Comp., 16:901, 2016.
[10] Adam Paetznick and Krysta M Svore. Repeat-until-success: Non-deterministic de-
composition of single-qubit unitaries. Quant. Inf. & Comp., 14(15-16):1277–1301,
2014.
[11] Alex Bocharov, Martin Roetteler, and Krysta M. Svore. Efficient synthesis of prob-
abilistic quantum circuits with fallback. Phys. Rev. A, 91:052317, May 2015. DOI:
10.1103/PhysRevA.91.052317.
[12] Andrew J Landahl and Chris Cesare. Complex instruction set computing architec-
ture for performing accurate quantum z rotations with less magic. arXiv preprint
arXiv:1302.3240, 2013. URL https://arxiv.org/pdf/1302.3240.pdf.
[13] Cody Jones. Distillation protocols for fourier states in quantum computing. arXiv
preprint arXiv:1303.3066, 2013. URL https://arxiv.org/pdf/1303.3066.pdf.
[14] Guillaume Duclos-Cianci and David Poulin. Reducing the quantum-computing over-
head with complex gate distillation. Phys. Rev. A, 91:042315, Apr 2015. DOI:
10.1103/PhysRevA.91.042315.
[15] Earl T Campbell and Joe O’Gorman. An efficient magic state approach to small
angle rotations. Quantum Science and Technology, 1(1):015007, 2016. DOI:
doi:10.1088/2058-9565/1/1/015007.
[16] Jeongwan Haah. Towers of generalized divisible quantum codes. arXiv preprint
arXiv:1709.08658, 2017. URL https://arxiv.org/pdf/1709.08658.pdf.
[17] Cody Jones. Low-overhead constructions for the fault-tolerant toffoli gate. Phys. Rev.
A, 87:022328, Feb 2013. DOI: 10.1103/PhysRevA.87.022328.
[18] Bryan Eastin. Distilling one-qubit magic states into toffoli states. Phys. Rev. A, 87:
032321, Mar 2013. DOI: 10.1103/PhysRevA.87.032321.
[19] Earl T. Campbell and Mark Howard. Unifying gate synthesis and magic state distilla-
tion. Phys. Rev. Lett., 118:060501, Feb 2017. DOI: 10.1103/PhysRevLett.118.060501.
[20] Earl T. Campbell and Mark Howard. Unified framework for magic state distillation
and multiqubit gate synthesis with reduced resource cost. Phys. Rev. A, 95:022316,
Feb 2017. DOI: 10.1103/PhysRevA.95.022316.
[21] Jeongwan Haah, Matthew B Hastings, D Poulin, and D Wecker. Magic state distilla-
tion at intermediate size. Quant. Inf. and Comp., 18:0114, 2018.
[22] Matthew B. Hastings and Jeongwan Haah. Distillation with sublogarithmic overhead.
Phys. Rev. Lett., 120:050504, Jan 2018. DOI: 10.1103/PhysRevLett.120.050504.
[23] Daniel Gottesman and Isaac L. Chuang. Demonstrating the viability of universal
quantum computation using teleportation and single-qubit operations. Nature, 402:
390, 1999. DOI: 10.1038/46503.
[24] Earl T. Campbell and Dan E. Browne. On the structure of protocols for magic state
distillation. Lecture Notes in Computer Science, 5906:20, 2009. DOI: 10.1007/978-3-
642-10698-9_3. arXiv:0908.0838.
[25] R. Raussendorf, J. Harrington, and K. Goyal. A fault-tolerant one-way quantum
computer. Annals of Physics, 321(9):2242 – 2270, 2006. ISSN 0003-4916. DOI:
10.1016/j.aop.2006.01.012.
[26] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland.
Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A, 86:
032324, Sep 2012. DOI: 10.1103/PhysRevA.86.032324.
Accepted in Quantum 2018-02-21, click title to verify 17