Dominy et al., Sci. Adv. 2019; 5 : eaau3333 23 January 2019
SCIENCE ADVANCES
|
RESEARCH ARTICLE
20 of 21
T. Wadstrom, S. Suerbaum, M. Achtman, An African origin for the intimate association
between humans and Helicobacter pylori. Nature 445, 915–918 (2007).
43. C. Schabereiter-Gurtner, A. M. Hirschl, B. Dragosics, P. Hufnagl, S. Puz, Z. Kovách,
M. Rotter, A. Makristathis, Novel real-time PCR assay for detection of Helicobacter pylori
infection and simultaneous clarithromycin susceptibility testing of stool and biopsy
specimens. J. Clin. Microbiol. 42, 4512–4518 (2004).
44. S. S. Spudich, A. C. Nilsson, N. D. Lollo, T. J. Liegler, C. J. Petropoulos, S. G. Deeks,
E. E. Paxinos, R. W. Price, Cerebrospinal fluid HIV infection and pleocytosis: Relation to
systemic infection and antiretroviral treatment. BMC Infect. Dis. 5, 98 (2005).
45. Y. Yamamoto, PCR in diagnosis of infection: Detection of bacteria in cerebrospinal fluids.
Clin. Diagn. Lab. Immunol. 9, 508–514 (2002).
46. M. J. Espy, J. R. Uhl, L. M. Sloan, S. P. Buckwalter, M. F. Jones, E. A. Vetter, J. D. C. Yao,
N. L. Wengenack, J. E. Rosenblatt, F. R. Cockerill III, T. F. Smith, Real-time PCR in clinical
microbiology: Applications for routine laboratory testing. Clin. Microbiol. Rev. 19,
165–256 (2006).
47. H. Yin, J. Kuret, C-terminal truncation modulates both nucleation and extension phases
of fibrillization. FEBS Lett. 580, 211–215 (2006).
48. B. Kovacech, M. Novak, Tau truncation is a productive posttranslational modification of
neurofibrillary degeneration in Alzheimer’s disease. Curr. Alzheimer Res. 7, 708–716
(2010).
49. S. Taniguchi-Watanabe, T. Arai, F. Kametani, T. Nonaka, M. Masuda-Suzukake, A. Tarutani,
S. Murayama, Y. Saito, K. Arima, M. Yoshida, H. Akiyama, A. Robinson, D. M. A. Mann,
T. Iwatsubo, M. Hasegawa, Biochemical classification of tauopathies by immunoblot,
protein sequence and mass spectrometric analyses of sarkosyl-insoluble and
trypsin-resistant tau. Acta Neuropathol. 131, 267–280 (2016).
50. D. Uberti, C. Rizzini, P. F. Spano, M. Memo, Characterization of tau proteins in human
neuroblastoma SH-SY5Y cell line. Neurosci. Lett. 235, 149–153 (1997).
51. T. McAvoy, M. E. Lassman, D. S. Spellman, Z. Ke, B. J. Howell, O. Wong, L. Zhu, M. Tanen,
A. Struyk, O. F. Laterza, Quantification of tau in cerebrospinal fluid by immunoaffinity
enrichment and tandem mass spectrometry. Clin. Chem. 60, 683–689 (2014).
52. C. Sato, N. R. Barthélemy, K. G. Mawuenyega, B. W. Patterson, B. A. Gordon,
J. Jockel-Balsarotti, M. Sullivan, M. J. Crisp, T. Kasten, K. M. Kirmess, N. M. Kanaan,
K. E. Yarasheski, A. Baker-Nigh, T. L. S. Benzinger, T. M. Miller, C. M. Karch, R. J. Bateman,
Tau kinetics in neurons and the human central nervous system. Neuron 97, 1284–1298.e7
(2018).
53. M. von Bergen, P. Friedhoff, J. Biernat, J. Heberle, E.-M. Mandelkow, E. Mandelkow,
Assembly of protein into Alzheimer paired helical filaments depends on a local
sequence motif (
306
VQIVYK
311
) forming structure. Proc. Natl. Acad. Sci. U.S.A. 97,
5129–5134 (2000).
54. J. Stöhr, H. Wu, M. Nick, Y. Wu, M. Bhate, C. Condello, N. Johnson, J. Rodgers, T. Lemmin,
S. Acharya, J. Becker, K. Robinson, M. J. S. Kelly, F. Gai, G. Stubbs, S. B. Prusiner,
W. F. DeGrado, A 31-residue peptide induces aggregation of tau’s microtubule-binding
region in cells. Nat. Chem. 9, 874–881 (2017).
55. S. Eick, W. Pfister, Efficacy of antibiotics against periodontopathogenic bacteria within
epithelial cells: An in vitro study. J. Periodontol. 75, 1327–1334 (2004).
56. E. Portelius, H. Zetterberg, R. A. Dean, A. Marcil, P. Bourgeois, M. Nutu, U. Andreasson,
E. Siemers, K. G. Mawuenyega, W. C. Sigurdson, P. C. May, S. M. Paul, D. M. Holtzman,
K. Blennow, R. J. Bateman, Amyloid-
1–15/16
as a marker for -secretase inhibition in
Alzheimer’s disease. J. Alzheimers Dis. 31, 335–341 (2012).
57. M. Sztukowska, A. Sroka, M. Bugno, A. Banbula, Y. Takahashi, R. N. Pike, C. A. Genco,
J. Travis, J. Potempa, The C-terminal domains of the gingipain K polyprotein are
necessary for assembly of the active enzyme and expression of associated activities.
Mol. Microbiol. 54, 1393–1408 (2004).
58. K.-A. Nguyen, J. Travis, J. Potempa, Does the importance of the C-terminal residues in the
maturation of RgpB from Porphyromonas gingivalis reveal a novel mechanism for protein
export in a subgroup of Gram-Negative bacteria? J. Bacteriol. 189, 833–843 (2007).
59. K. Govindpani, B. Calvo-Flores Guzman, C. Vinnakota, H. J. Waldvogel, R. L. Faull,
A. Kwakowsky, Towards a better understanding of GABAergic remodeling in Alzheimer’s
disease. Int. J. Mol. Sci. 18, E1813 (2017).
60. W. Fornicola, A. Pelcovits, B.-X. Li, J. Heath, G. Perry, R. J. Castellani, Alzheimer disease
pathology in middle age reveals a spatial-temporal disconnect between amyloid- and
phosphorylated tau. Open Neurol. J. 8, 22–26 (2014).
61. J. C. Lenzo, N. M. O’Brien-Simpson, R. K. Orth, H. L. Mitchell, S. G. Dashper, E. C. Reynolds,
Porphyromonas gulae has virulence and immunological characteristics similar to those of
the human periodontal pathogen Porphyromonas gingivalis. Infect. Immun. 84,
2575–2585 (2016).
62. Y. Yamasaki, R. Nomura, K. Nakano, S. Naka, M. Matsumoto-Nakano, F. Asai, T. Ooshima,
Distribution of periodontopathic bacterial species in dogs and their owners. Arch. Oral
Biol. 57, 1183–1188 (2012).
63. L. Sun, R. Zhou, G. Yang, Y. Shi, Analysis of 138 pathogenic mutations in presenilin-1 on
the in vitro production of A42 and A40 peptides by -secretase. Proc. Natl. Acad.
Sci. U.S.A. 114, E476–E485 (2017).
64. R. Zhou, G. Yang, Y. Shi, Dominant negative effect of the loss-of-function -secretase
mutants on the wild-type enzyme through heterooligomerization. Proc. Natl. Acad.
Sci. U.S.A. 114, 12731–12736 (2017).
65. W. B. Zigman, D. A. Devenny, S. J. Krinsky-McHale, E. C. Jenkins, T. K. Urv, J. Wegiel,
N. Schupf, W. Silverman, Alzheimer’s disease in adults with Down syndrome. Int. Rev. Res.
Ment. Retard. 36, 103–145 (2008).
66. P. J. Cichon, L. B. Crawford, W. D. Grimm, Early-onset periodontitis associated with
Down’s syndrome—Clinical interventional study. Ann. Periodontol. 3, 370–380 (1998).
67. A. Amano, T. Kishima, S. Kimura, M. Takiguchi, T. Ooshima, S. Hamada, I. Morisaki,
Periodontopathic bacteria in children with Down syndrome. J. Periodontol. 71, 249–255
(2000).
68. G. Ram, J. Chinen, Infections and immunodeficiency in Down syndrome. Clin. Exp.
Immunol. 164, 9–16 (2011).
69. M. B. Giacona, P. N. Papapanou, I. B. Lamster, L. L. Rong, V. D. D’Agati, A. M. Schmidt,
E. Lalla, Porphyromonas gingivalis induces its uptake by human macrophages and
promotes foam cell formation in vitro. FEMS Microbiol. Lett. 241, 95–101 (2004).
70. M. Coureuil, H. Lécuyer, S. Bourdoulous, X. Nassif, A journey into the brain: Insight into
how bacterial pathogens cross blood-brain barriers. Nat. Rev. Microbiol. 15, 149–159
(2017).
71. B. R. Talamo, W.-H. Feng, M. Perez-Cruet, L. Adelman, K. Kosik, V. M.-Y. Lee, L. C. Cork,
J. S. Kauer, Pathologic changes in olfactory neurons in Alzheimer’s disease. Ann. N. Y.
Acad. Sci. 640, 1–7 (1991).
72. L. Li, R. Michel, J. Cohen, A. DeCarlo, E. Kozarov, Intracellular survival and vascular
cell-to-cell transmission of Porphyromonas gingivalis. BMC Microbiol. 8, 26 (2008).
73. T. E. Cope, T. Rittman, R. J. Borchert, P. S. Jones, D. Vatansever, K. Allinson, L. Passamonti,
P. Vazquez Rodriguez, W. R. Bevan-Jones, J. T. O’Brien, J. B. Rowe, Tau burden and the
functional connectome in Alzheimer’s disease and progressive supranuclear palsy. Brain
141, 550–567 (2018).
74. S. Urnowey, T. Ansai, V. Bitko, K. Nakayama, T. Takehara, S. Barik, Temporal activation of
anti- and pro-apoptotic factors in human gingival fibroblasts infected with the
periodontal pathogen, Porphyromonas gingivalis: Potential role of bacterial proteases in
host signalling. BMC Microbiol. 6, 26 (2006).
75. J. Chu, E. Lauretti, D. Praticò, Caspase-3-dependent cleavage of Akt modulates tau
phosphorylation via GSK3 kinase: Implications for Alzheimer’s disease. Mol. Psychiatry
22, 1002–1008 (2017).
76. P. Sandhu, M. M. Naeem, C. Lu, P. Kumarathasan, J. Gomes, A. Basak, Ser
422
phosphorylation blocks human Tau cleavage by caspase-3: Biochemical implications
to Alzheimer’s Disease. Bioorg. Med. Chem. Lett. 27, 642–652 (2017).
77. E. H. Corder, A. M. Saunders, W. J. Strittmatter, D. E. Schmechel, P. C. Gaskell,
G. W. Small, A. D. Roses, J. L. Haines, M. A. Pericak-Vance, Gene dose of apolipoprotein
E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261,
921–923 (1993).
78. S. E. Roselaar, A. Daugherty, Apolipoprotein E-deficient mice have impaired innate
immune responses to Listeria monocytogenes in vivo. J. Lipid Res. 39, 1740–1743 (1998).
79. J. Lönn, S. Ljunggren, K. Klarström-Engström, I. Demirel, T. Bengtsson, H. Karlsson,
Lipoprotein modifications by gingipains of Porphyromonas gingivalis. J. Periodontal Res.
53, 403–413 (2018).
80. F. M. Harris, W. J. Brecht, Q. Xu, I. Tesseur, L. Kekonius, T. Wyss-Coray, J. D. Fish, E. Masliah,
P. C. Hopkins, K. Scearce-Levie, K. H. Weisgraber, L. Mucke, R. W. Mahley, Y. Huang,
Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer’s disease-like
neurodegeneration and behavioral deficits in transgenic mice. Proc. Natl. Acad. Sci. U.S.A.
100, 10966–10971 (2003).
81. T. R. Jay, V. E. von Saucken, G. E. Landreth, TREM2 in neurodegenerative diseases.
Mol. Neurodegener. 12, 56 (2017).
82. P. Minoretti, C. Gazzaruso, C. D. Vito, E. Emanuele, M. P. Bianchi, E. Coen, M. Reino,
D. Geroldi, Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on
susceptibility to late-onset Alzheimer’s disease. Neurosci. Lett. 391, 147–149 (2006).
83. N. Brouwers, C. Van Cauwenberghe, S. Engelborghs, J.-C. Lambert, K. Bettens,
N. Le Bastard, F. Pasquier, A. G. Montoya, K. Peeters, M. Mattheijssens, R. Vandenberghe,
P. P. Deyn, M. Cruts, P. Amouyel, K. Sleegers, C. Van Broeckhoven, Alzheimer risk
associated with a copy number variation in the complement receptor 1 increasing
C3b/C4b binding sites. Mol. Psychiatry 17, 223–233 (2012).
84. M.-S. Tan, J.-T. Yu, T. Jiang, X.-C. Zhu, H.-F. Wang, W. Zhang, Y.-L. Wang, W. Jiang, L. Tan,
NLRP3 polymorphisms are associated with late-onset Alzheimer’s disease in Han
Chinese. J. Neuroimmunol. 265, 91–95 (2013).
85. X. Gao, Y. Dong, Z. Liu, B. Niu, Silencing of triggering receptor expressed on myeloid
cells-2 enhances the inflammatory responses of alveolar macrophages to
lipopolysaccharide. Mol. Med. Rep. 7, 921–926 (2013).
86. E.-N. N’Diaye, C. S. Branda, S. S. Branda, L. Nevarez, M. Colonna, C. Lowell, J. A. Hamerman,
W. E. Seaman, TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic
receptor for bacteria. J. Cell Biol. 184, 215–223 (2009).
on January 17, 2020http://advances.sciencemag.org/Downloaded from