normal physiology and potential aberrations in neurological diseases – has not been reported. We
therefore verified pathologically the existence of a dural lymphatic network in human and nonhuman
primates (common marmoset monkeys) and evaluated two magnetic resonance imaging (MRI) tech-
niques that might enable its visualization in vivo. First, the T2-weighted fluid-attenuation inversion
recovery (T2-FLAIR) pulse sequence, which is the clinical standard for detecting lesions within the
brain parenchyma, is highly sensitive to the presence of gadolinium-based contrast agents in the
CSF (
Mamourian et al., 2000; Mathews et al., 1999; Absinta et al., 2015). Second, ‘black-blood’
imaging sequences, which are typically used for measurement of vascular wall thickness or detection
of atherosclerotic plaque, are tuned to darken the contents of blood vessels (even when they contain
a gadolinium-based contrast agent), but in the process the images may highlight vessels with other
contents and flow properties (
Mandell et al., 2017). For comparison, we also acquired a postcon-
trast T1-weighted Magnetization Prepared Rapid Acquisition of Gradient Echoes (MPRAGE) MRI
sequence, which is widely implemented for structural brain imaging and depicts avid enhancement
of dura mater and blood vessels, but which would not be expected to discriminate lymphatic
vessels.
Results and discussion
Cerebral blood vessels have a highly regulated blood-brain barrier, protecting the neuropil from
many contents of the circulating blood. Under physiological conditions, the blood-brain barrier pre-
vents gadolinium-based chelates in standard clinical use from passing into the Virchow-Robin peri-
vascular spaces and parenchyma, so that these structures do not enhance on MRI. On the other
hand, dural blood vessels lack a blood-meningeal barrier, enabling leakage of circulating fluids and
small substances, including gadolinium-based compounds. This explains the thin, though often
incomplete, dural enhancement that is seen on conventional T1-weighted MRI scans under
eLife digest How does the brain rid itself of waste products? Other organs in the body achieve
this via a system called the lymphatic system. A network of lymphatic vessels extends throughout
the body in a pattern similar to that of blood vessels. Waste products from cells, plus bacteria,
viruses and excess fluids drain out of the body’s tissues into lymphatic vessels, which transfer them
to the bloodstream. Blood vessels then carry the waste products to the kidneys, which filter them
out for excretion. Lymphatic vessels are also a highway for circulation of white blood cells, which
fight infections, and are therefore an important part of the immune system.
Unlike other organs, the brain does not contain lymphatic vessels. So how does it remove waste?
Some of the brain’s waste products enter the fluid that bathes and protects the brain – the
cerebrospinal fluid – before being disposed of via the bloodstream. However, recent studies in
rodents have also shown the presence of lymphatic vessels inside the outer membrane surrounding
the brain, the dura mater.
Absinta, Ha et al. now show that the dura mater of people and marmoset monkeys contains
lymphatic vessels too. Spotting lymphatic vessels is challenging because they resemble blood
vessels, which are much more numerous. In addition, Absinta, Ha et al. found a way to visualize the
lymphatic vessels in the dura mater using brain magnetic resonance imaging, and could confirm that
lymphatic vessels are present in autopsy tissue using special staining methods.
For magnetic resonance imaging, monkeys and human volunteers received an injection of a dye-
like substance called gadolinium, which travels via the bloodstream to the brain. In the dura mater,
gadolinium leaks out of blood vessels and collects inside lymphatic vessels, which show up as bright
white areas on brain scans. To confirm that the white areas were lymphatic vessels, the experiment
was repeated using a different dye that does not leak out of blood vessels. As expected, the signals
observed in the previous brain scans did not appear.
By visualizing the lymphatic system, this technique makes it possible to study how the brain
removes waste products and circulates white blood cells, and to examine whether this process is
impaired in aging or disease.
DOI: https://doi.org/10.7554/eLife.29738.002
Absinta et al. eLife 2017;6:e29738. DOI: https://doi.org/10.7554/eLife.29738 2 of 15
Short report Human Biology and Medicine Neuroscience