Vitalik Buterin (born in 1994) is a Russian programmer and the co-f...
[Here is the annotated version](http://fermatslibrary.com/s/bitcoin...
As stated, DAOs are decentralized entities (more specifically long ...
[Chaumian blinding](http://www.hit.bme.hu/~buttyan/courses/BMEVIHIM...
Could someone explain what a Hashcash puzzle is?
### Byzantine Fault Tolerance Byzantine fault tolerance is the ch...
A Sybil attack involves an entity subverting a peer-to-peer system ...
Could someone explain step-by-step what is going on in this figure?...
Can someone expand on the significance of the 2 hours? That's the t...
Sybil attack in computer security is an attack wherein a reputation...
At the moment the Bitcoin blockchain takes up around 142GB and the ...
### Simplified Payment Verification Simplified Payment Verificatio...
Here is an example of Bitcoin’s scripting language which calculates...
What he is stating here is that in bitcoin, a single UTXO cannot de...
This really spiked my interest and I found it to be a very neat pro...
Testing the page: Inline-style: ![alt text](https://github.co...
I have read, from other authors, that the EVM is "almost" Turing co...
Ethereum White Paper
A NEXT GENERATION SMART CONTRACT & DECENTRALIZED APPLICATION PLATFORM
By Vitalik Buterin
When Satoshi Nakamoto first set the Bitcoin blockchain into motion in January 2009, he was
simultaneously introducing two radical and untested concepts. The first is the "bitcoin", a decentralized
peer-to-peer online currency that maintains a value without any backing, intrinsic value or central issuer. So
far, the "bitcoin" as a currency unit has taken up the bulk of the public attention, both in terms of the political
aspects of a currency without a central bank and its extreme upward and downward volatility in price.
However, there is also another, equally important, part to Satoshi's grand experiment: the concept of a proof of
work-based blockchain to allow for public agreement on the order of transactions. Bitcoin as an application can
be described as a first-to-file system: if one entity has 50 BTC, and simultaneously sends the same 50 BTC to
A and to B, only the transaction that gets confirmed first will process. There is no intrinsic way of determining
from two transactions which came earlier, and for decades this stymied the development of decentralized
digital currency. Satoshi's blockchain was the first credible decentralized solution. And now, attention is
rapidly starting to shift toward this second part of Bitcoin's technology, and how the blockchain concept can be
used for more than just money.
Commonly cited applications include using on-blockchain digital assets to represent custom currencies and
financial instruments ("colored coins"), the ownership of an underlying physical device ("smart property"),
non-fungible assets such as domain names ("Namecoin") as well as more advanced applications such as
decentralized exchange, financial derivatives, peer-to-peer gambling and on-blockchain identity and
reputation systems. Another important area of inquiry is "smart contracts" - systems which automatically
move digital assets according to arbitrary pre-specified rules. For example, one might have a treasury contract
of the form "A can withdraw up to X currency units per day, B can withdraw up to Y per day, A and B together
can withdraw anything, and A can shut off B's ability to withdraw". The logical extension of this is
decentralized autonomous organizations (DAOs) - long-term smart contracts that contain the assets and
encode the bylaws of an entire organization. What Ethereum intends to provide is a blockchain with a built-in
fully fledged Turing-complete programming language that can be used to create "contracts" that can be used
to encode arbitrary state transition functions, allowing users to create any of the systems described above, as
well as many others that we have not yet imagined, simply by writing up the logic in a few lines of code.
Page 1
ethereum.org
History
The concept of decentralized digital currency, as well as alternative applications like property registries,
has been around for decades. The anonymous e-cash protocols of the 1980s and the 1990s, mostly
reliant on a cryptographic primitive known as Chaumian blinding, provided a currency with a high degree
of privacy, but the protocols largely failed to gain traction because of their reliance on a centralized
intermediary. In 1998, Wei Dai's b-money became the first proposal to introduce the idea of creating
money through solving computational puzzles as well as decentralized consensus, but the proposal
was scant on details as to how decentralized consensus could actually be implemented. In 2005, Hal
Finney introduced a concept of "reusable proofs of work", a system which uses ideas from b-money
together with Adam Back's computationally difficult Hashcash puzzles to create a concept for a
cryptocurrency, but once again fell short of the ideal by relying on trusted computing as a backend.
Because currency is a first-to-file application, where the order of transactions is often of critical
importance, decentralized currencies require a solution to decentralized consensus. The main roadblock
that all pre-Bitcoin currency protocols faced is the fact that, while there had been plenty of research on
creating secure Byzantine-fault-tolerant multiparty consensus systems for many years, all of the
protocols described were solving only half of the problem. The protocols assumed that all participants in
the system were known, and produced security margins of the form "if N parties participate, then the
system can tolerate up to N/4 malicious actors". The problem is, however, that in an anonymous setting
such security margins are vulnerable to sybil attacks, where a single attacker creates thousands of
simulated nodes on a server or botnet and uses these nodes to unilaterally secure a majority share.
The innovation provided by Satoshi is the idea of combining a very simple decentralized consensus
protocol, based on nodes combining transactions into a "block" every ten minutes creating an
ever-growing blockchain, with proof of work as a mechanism through which nodes gain the right to
participate in the system. While nodes with a large amount of computational power do have
proportionately greater influence, coming up with more computational power than the entire network
combined is much harder than simulating a million nodes. Despite the Bitcoin blockchain model's
crudeness and simplicity, it has proven to be good enough, and would over the next five years become
the bedrock of over two hundred currencies and protocols around the world.
Page 4
ethereum.org
Bitcoin As A State Transition System
From a technical standpoint, the Bitcoin ledger can be thought of as a state transition system, where there is
a "state" consisting of the ownership status of all existing bitcoins and a "state transition function" that takes
a state and a transaction and outputs a new state which is the result. In a standard banking system, for
example, the state is a balance sheet, a transaction is a request to move $X from A to B, and the state
transition function reduces the value in A's account by $X and increases the value in B's account by $X. If A's
account has less than $X in the first place, the state transition function returns an error. Hence, one can
formally define:
APPLY(S,TX)>S'orERROR
In the banking system defined above:
APPLY({ Alice: $50, Bob: $50 },"send $20 from Alice to Bob") = { Alice: $30,  
Bob:$70}
But:
APPLY({Alice:$50,Bob:$50},"send$70fromAlicetoBob")=ERROR
The "state" in Bitcoin is the collection of all coins (technically, "unspent transaction outputs" or UTXO) that
have been minted and not yet spent, with each UTXO having a denomination and an owner (defined by a
20-byte address which is essentially a cryptographic public key
[1]
). A transaction contains one or more inputs,
with each input containing a reference to an existing UTXO and a cryptographic signature produced by the
private key associated with the owner's address, and one or more outputs, with each output containing a new
UTXO to be added to the state.
Page 5
ethereum.org
The state transition function APPLY(S,TX)>S'can be defined roughly as follows:
1. For each input in TX:
i. If the referenced UTXO is not in S, return an error.
ii. If the provided signature does not match the owner of the UTXO, return an error.
2. If the sum of the denominations of all input UTXO is less than the sum of the denominations of
all output UTXO, return an error.
3. Return S with all input UTXO removed and all output UTXO added.
The first half of the first step prevents transaction senders from spending coins that do not exist, the second
half of the first step prevents transaction senders from spending other people's coins, and the second step
enforces conservation of value. In order to use this for payment, the protocol is as follows. Suppose Alice wants
to send 11.7 BTC to Bob. First, Alice will look for a set of available UTXO that she owns that totals up to at least
11.7 BTC. Realistically, Alice will not be able to get exactly 11.7 BTC; say that the smallest she can get is
6+4+2=12. She then creates a transaction with those three inputs and two outputs. The first output will be 11.7
BTC with Bob's address as its owner, and the second output will be the remaining 0.3 BTC "change", with the
owner being Alice herself.
Mining
If we had access to a trustworthy centralized service, this system would be trivial to implement; it
could simply be coded exactly as described. However, with Bitcoin we are trying to build a
decentralized currency system, so we will need to combine the state transition system with a
consensus system in order to ensure that everyone agrees on the order of transactions. Bitcoin's
decentralized consensus process requires nodes in the network to continuously attempt to produce
packages of transactions called "blocks". The network is intended to produce roughly one block every
ten minutes, with each block containing a timestamp, a nonce, a reference to (ie. hash of) the
Page 6
ethereum.org
previous block and a list of all of the transactions that have taken place since the previous block.
Over time, this creates a persistent, ever-growing, "blockchain" that constantly updates to represent
the latest state of the Bitcoin ledger.
The algorithm for checking if a block is valid, expressed in this paradigm, is as follows:
1. Check if the previous block referenced by the block exists and is valid
2. Check that the timestamp of the block is greater than that of the previous block
[2]
and less than 2
hours into the future.
3. Check that the proof of work on the block is valid.
4. Let S[0] be the state at the end of the previous block.
5. Suppose TX is the block's transaction list with n transactions. For all i in 0...n-1, setS[i+1] =
APPLY(S[i],TX[i]) If any application returns an error, exit and return false.
6. Return true, and register S[n] as the state at the end of this block
Essentially, each transaction in the block must provide a state transition that is valid. Note that the state is
not encoded in the block in any way; it is purely an abstraction to be remembered by the validating node and
can only be (securely) computed for any block by starting from the genesis state and sequentially applying
every transaction in every block. Additionally, note that the order in which the miner includes transactions into
the block matters; if there are two transactions A and B in a block such that B spends a UTXO created by A,
then the block will be valid if A comes before B but not otherwise.
The interesting part of the block validation algorithm is the concept of "proof of work": the condition is that the
SHA256 hash of every block, treated as a 256-bit number, must be less than a dynamically adjusted target,
which as of the time of this writing is approximately 2
190
. The purpose of this is to make block creation
computationally "hard", thereby preventing sybil attackers from remaking the entire blockchain in their favor.
Because SHA256 is designed to be a completely unpredictable pseudorandom function, the only way to create
a valid block is simply trial and error, repeatedly incrementing the nonce and seeing if the new hash matches.
At the current target of 2192, this means an average of 264 tries; in general, the target is recalibrated by the
network every 2016 blocks so that on average a new block is produced by some node in the network every ten
minutes. In order to compensate miners for this computational work, the miner of every block is entitled to
include a transaction giving themselves 25 BTC out of nowhere. Additionally, if any transaction has a higher
total denomination in its inputs than in its outputs, the difference also goes to the miner as a "transaction
fee". Incidentally, this is also the only mechanism by which BTC are issued; the genesis state contained no
coins at all.
Page 7
ethereum.org
In order to better understand the purpose of mining, let us examine what happens in the event of a malicious
attacker. Since Bitcoin's underlying cryptography is known to be secure, the attacker will target the one part of
the Bitcoin system that is not protected by cryptography directly: the order of transactions. The attacker's
strategy is simple:
1. Send 100 BTC to a merchant in exchange for some product (preferably a rapid-delivery digital
good)
2. Wait for the delivery of the product
3. Produce another transaction sending the same 100 BTC to himself
4. Try to convince the network that his transaction to himself was the one that came first.
Once step (1) has taken place, after a few minutes some miner will include the transaction in a block, say
block number 270000. After about one hour, five more blocks will have been added to the chain after that block,
with each of those blocks indirectly pointing to the transaction and thus "confirming" it. At this point, the
merchant will accept the payment as finalized and deliver the product; since we are assuming this is a digital
good, delivery is instant. Now, the attacker creates another transaction sending the 100 BTC to himself. If the
attacker simply releases it into the wild, the transaction will not be processed; miners will attempt to run
APPLY(S,TX) and notice that TX consumes a UTXO which is no longer in the state. So instead, the attacker
creates a "fork" of the blockchain, starting by mining another version of block 270000 pointing to the same
block 269999 as a parent but with the new transaction in place of the old one. Because the block data is
different, this requires redoing the proof of work. Furthermore, the attacker's new version of block 270000 has a
different hash, so the original blocks 270001 to 270005 do not "point" to it; thus, the original chain and the
attacker's new chain are completely separate. The rule is that in a fork the longest blockchain (ie. the one
backed by the largest quantity of proof of work) is taken to be the truth, and so legitimate miners will work on
the 270005 chain while the attacker alone is working on the 270000 chain. In order for the attacker to make
his blockchain the longest, he would need to have more computational power than the rest of the network
combined in order to catch up (hence, "51% attack").
Page 8
ethereum.org
Merkle Trees
Left: it suffices to present only a small number of nodes in a Merkle tree to give a proof of the validity of a branch.
Right: any attempt to change any part of the Merkle tree will eventually lead to an inconsistency somewhere up the
chain.
An important scalability feature of Bitcoin is that the block is stored in a multi-level data structure. The "hash"
of a block is actually only the hash of the block header, a roughly 200-byte piece of data that contains the
timestamp, nonce, previous block hash and the root hash of a data structure called the Merkle tree storing all
transactions in the block.
A Merkle tree is a type of binary tree, composed of a set of nodes with a large number of leaf nodes at the
bottom of the tree containing the underlying data, a set of intermediate nodes where each node is the hash of
its two children, and finally a single root node, also formed from the hash of its two children, representing the
"top" of the tree. The purpose of the Merkle tree is to allow the data in a block to be delivered piecemeal: a node
can download only the header of a block from one source, the small part of the tree relevant to them from
Page 9
ethereum.org
another source, and still be assured that all of the data is correct. The reason why this works is that hashes
propagate upward: if a malicious user attempts to swap in a fake transaction into the bottom of a Merkle tree,
this change will cause a change in the node above, and then a change in the node above that, finally
changing the root of the tree and therefore the hash of the block, causing the protocol to register it as a
completely different block (almost certainly with an invalid proof of work).
The Merkle tree protocol is arguably essential to long-term sustainability. A "full node" in the Bitcoin network,
one that stores and processes the entirety of every block, takes up about 15 GB of disk space in the Bitcoin
network as of April 2014, and is growing by over a gigabyte per month. Currently, this is viable for some desktop
computers and not phones, and later on in the future only businesses and hobbyists will be able to participate.
A protocol known as "simplified payment verification" (SPV) allows for another class of nodes to exist, called
"light nodes", which download the block headers, verify the proof of work on the block headers, and then
download only the "branches" associated with transactions that are relevant to them. This allows light nodes
to determine with a strong guarantee of security what the status of any Bitcoin transaction, and their current
balance, is while downloading only a very small portion of the entire blockchain.
Alternative Blockchain Applications
The idea of taking the underlying blockchain idea and applying it to other concepts also has a long history. In
2005, Nick Szabo came out with the concept of "secure property titles with owner authority", a document
describing how "new advances in replicated database technology" will allow for a blockchain-based system for
storing a registry of who owns what land, creating an elaborate framework including concepts such as
homesteading, adverse possession and Georgian land tax. However, there was unfortunately no effective
replicated database system available at the time, and so the protocol was never implemented in practice.
After 2009, however, once Bitcoin's decentralized consensus was developed a number of alternative
applications rapidly began to emerge:
Namecoin - created in 2010, Namecoin is best described as a decentralized name registration
database. In decentralized protocols like Tor, Bitcoin and BitMessage, there needs to be some way
of identifying accounts so that other people can interact with them, but in all existing solutions the
only kind of identifier available is a pseudorandom hash
like1LW79wp5ZBqaHW1jL5TCiBCrhQYtHagUWy. Ideally, one would like to be able to have an
account with a name like "george". However, the problem is that if one person can create an
account named "george" then someone else can use the same process to register "george" for
themselves as well and impersonate them. The only solution is a first-to-file paradigm, where the
first registrant succeeds and the second fails - a problem perfectly suited for the Bitcoin consensus
protocol. Namecoin is the oldest, and most successful, implementation of a name registration
system using such an idea.
Colored coins - the purpose of colored coins is to serve as a protocol to allow people to create their
own digital currencies - or, in the important trivial case of a currency with one unit, digital tokens,
Page 10
ethereum.org
on the Bitcoin blockchain. In the colored coins protocol, one "issues" a new currency by publicly
assigning a color to a specific Bitcoin UTXO, and the protocol recursively defines the color of other
UTXO to be the same as the color of the inputs that the transaction creating them spent (some
special rules apply in the case of mixed-color inputs). This allows users to maintain wallets
containing only UTXO of a specific color and send them around much like regular bitcoins,
backtracking through the blockchain to determine the color of any UTXO that they receive.
Metacoins - the idea behind a metacoin is to have a protocol that lives on top of Bitcoin, using
Bitcoin transactions to store metacoin transactions but having a different state transition function,
APPLY'. Because the metacoin protocol cannot prevent invalid metacoin transactions from
appearing in the Bitcoin blockchain, a rule is added that if APPLY'(S,TX) returns an error, the
protocol defaults to APPLY'(S,TX) = S. This provides an easy mechanism for creating an arbitrary
cryptocurrency protocol, potentially with advanced features that cannot be implemented inside of
Bitcoin itself, but with a very low development cost since the complexities of mining and networking
are already handled by the Bitcoin protocol.
Thus, in general, there are two approaches toward building a consensus protocol: building an independent
network, and building a protocol on top of Bitcoin. The former approach, while reasonably successful in the
case of applications like Namecoin, is difficult to implement; each individual implementation needs to
bootstrap an independent blockchain, as well as building and testing all of the necessary state transition and
networking code. Additionally, we predict that the set of applications for decentralized consensus technology
will follow a power law distribution where the vast majority of applications would be too small to warrant their
own blockchain, and we note that there exist large classes of decentralized applications, particularly
decentralized autonomous organizations, that need to interact with each other.
The Bitcoin-based approach, on the other hand, has the flaw that it does not inherit the simplified payment
verification features of Bitcoin. SPV works for Bitcoin because it can use blockchain depth as a proxy for
validity; at some point, once the ancestors of a transaction go far enough back, it is safe to say that they were
legitimately part of the state. Blockchain-based meta-protocols, on the other hand, cannot force the blockchain
not to include transactions that are not valid within the context of their own protocols. Hence, a fully secure
SPV meta-protocol implementation would need to backward scan all the way to the beginning of the Bitcoin
blockchain to determine whether or not certain transactions are valid. Currently, all "light" implementations of
Bitcoin-based meta-protocols rely on a trusted server to provide the data, arguably a highly suboptimal result
especially when one of the primary purposes of a cryptocurrency is to eliminate the need for trust.
Scripting
Even without any extensions, the Bitcoin protocol actually does facilitate a weak version of a concept of "smart
contracts". UTXO in Bitcoin can be owned not just by a public key, but also by a more complicated script
expressed in a simple stack-based programming language. In this paradigm, a transaction spending that
UTXO must provide data that satisfies the script. Indeed, even the basic public key ownership mechanism is
Page 11
ethereum.org
implemented via a script: the script takes an elliptic curve signature as input, verifies it against the
transaction and the address that owns the UTXO, and returns 1 if the verification is successful and 0
otherwise. Other, more complicated, scripts exist for various additional use cases. For example, one can
construct a script that requires signatures from two out of a given three private keys to validate ("multisig"), a
setup useful for corporate accounts, secure savings accounts and some merchant escrow situations. Scripts
can also be used to pay bounties for solutions to computational problems, and one can even construct a script
that says something like "this Bitcoin UTXO is yours if you can provide an SPV proof that you sent a Dogecoin
transaction of this denomination to me", essentially allowing decentralized cross-cryptocurrency exchange.
However, the scripting language as implemented in Bitcoin has several important limitations:
Lack of Turing-completeness - that is to say, while there is a large subset of computation
that the Bitcoin scripting language supports, it does not nearly support everything. The main
category that is missing is loops. This is done to avoid infinite loops during transaction verification;
theoretically it is a surmountable obstacle for script programmers, since any loop can be simulated
by simply repeating the underlying code many times with an if statement, but it does lead to scripts
that are very space-inefficient. For example, implementing an alternative elliptic curve signature
algorithm would likely require 256 repeated multiplication rounds all individually included in the
code.
Value-blindness - there is no way for a UTXO script to provide fine-grained control over the
amount that can be withdrawn. For example, one powerful use case of an oracle contract would be a
hedging contract, where A and B put in $1000 worth of BTC and after 30 days the script sends $1000
worth of BTC to A and the rest to B. This would require an oracle to determine the value of 1 BTC in
USD, but even then it is a massive improvement in terms of trust and infrastructure requirement over
the fully centralized solutions that are available now. However, because UTXO are all-or-nothing, the
only way to achieve this is through the very inefficient hack of having many UTXO of varying
denominations (eg. one UTXO of 2
k
for every k up to 30) and having the oracle pick which UTXO to
send to A and which to B.
Lack of state - UTXO can either be spent or unspent; there is no opportunity for multi-stage
contracts or scripts which keep any other internal state beyond that. This makes it hard to make
multi-stage options contracts, decentralized exchange offers or two-stage cryptographic commitment
protocols (necessary for secure computational bounties). It also means that UTXO can only be used
to build simple, one-off contracts and not more complex "stateful" contracts such as decentralized
organizations, and makes meta-protocols difficult to implement. Binary state combined with
value-blindness also mean that another important application, withdrawal limits, is impossible.
Blockchain-blindness - UTXO are blind to blockchain data such as the nonce and previous
hash. This severely limits applications in gambling, and several other categories, by depriving the
scripting language of a potentially valuable source of randomness.
Page 12
ethereum.org
Thus, we see three approaches to building advanced applications on top of cryptocurrency: building a new
blockchain, using scripting on top of Bitcoin, and building a meta-protocol on top of Bitcoin. Building a new
blockchain allows for unlimited freedom in building a feature set, but at the cost of development time and
bootstrapping effort. Using scripting is easy to implement and standardize, but is very limited in its
capabilities, and meta-protocols, while easy, suffer from faults in scalability. With Ethereum, we intend to build
a generalized framework that can provide the advantages of all three paradigms at the same time.
Ethereum
The intent of Ethereum is to merge together and improve upon the concepts of scripting, altcoins and on-chain
meta-protocols, and allow developers to create arbitrary consensus-based applications that have the
scalability, standardization, feature-completeness, ease of development and interoperability offered by these
different paradigms all at the same time. Ethereum does this by building what is essentially the ultimate
abstract foundational layer: a blockchain with a built-in Turing-complete programming language, allowing
anyone to write smart contracts and decentralized applications where they can create their own arbitrary
rules for ownership, transaction formats and state transition functions. A bare-bones version of Namecoin can
be written in two lines of code, and other protocols like currencies and reputation systems can be built in under
twenty. Smart contracts, cryptographic "boxes" that contain value and only unlock it if certain conditions are
met, can also be built on top of our platform, with vastly more power than that offered by Bitcoin scripting
because of the added powers of Turing-completeness, value-awareness, blockchain-awareness and state.
Ethereum Accounts
In Ethereum, the state is made up of objects called "accounts", with each account having a 20-byte address
and state transitions being direct transfers of value and information between accounts. An Ethereum account
contains four fields:
The nonce, a counter used to make sure each transaction can only be processed once
The account's current ether balance
The account's contract code, if present
The account's storage (empty by default)
"Ether" is the main internal crypto-fuel of Ethereum, and is used to pay transaction fees. In general, there are
two types of accounts: externally owned accounts, controlled by private keys, and contract accounts, controlled
by their contract code. An externally owned account has no code, and one can send messages from an
externally owned account by creating and signing a transaction; in a contract account, every time the
Page 13
ethereum.org
contract account receives a message its code activates, allowing it to read and write to internal storage and
send other messages or create contracts in turn.
Messages and Transactions
"Messages" in Ethereum are somewhat similar to “transactions” in Bitcoin, but with three important
differences. First, an Ethereum message can be created either by an external entity or a contract, whereas a
Bitcoin transaction can only be created externally. Second, there is an explicit option for Ethereum messages
to contain data. Finally, the recipient of an Ethereum message, if it is a contract account, has the option to
return a response; this means that Ethereum messages also encompass the concept of functions.
The term "transaction" is used in Ethereum to refer to the signed data package that stores a message to be
sent from an externally owned account. Transactions contain the recipient of the message, a signature
identifying the sender, the amount of ether and the data to send, as well as two values called STARTGAS and
GASPRICE. In order to prevent exponential blowup and infinite loops in code, each transaction is required to set
a limit to how many computational steps of code execution it can spawn, including both the initial message
and any additional messages that get spawned during execution. STARTGAS is this limit, and GASPRICE is
the fee to pay to the miner per computational step. If transaction execution "runs out of gas", all state changes
revert - except for the payment of the fees, and if transaction execution halts with some gas remaining then
the remaining portion of the fees is refunded to the sender. There is also a separate transaction type, and
corresponding message type, for creating a contract; the address of a contract is calculated based on the
hash of the account nonce and transaction data.
An important consequence of the message mechanism is the "first class citizen" property of Ethereum - the
idea that contracts have equivalent powers to external accounts, including the ability to send message and
create other contracts. This allows contracts to simultaneously serve many different roles: for example, one
might have a member of a decentralized organization (a contract) be an escrow account (another contract)
between an paranoid individual employing custom quantum-proof Lamport signatures (a third contract) and
a co-signing entity which itself uses an account with five keys for security (a fourth contract). The strength of
the Ethereum platform is that the decentralized organization and the escrow contract do not need to care
about what kind of account each party to the contract is.
Page 14
ethereum.org
Ethereum State Transition Function
The Ethereum state transition function, APPLY(S,TX) -> S' can be defined as follows:
1. Check if the transaction is well-formed (ie. has the right number of values), the signature is valid,
and the nonce matches the nonce in the sender's account. If not, return an error.
2. Calculate the transaction fee as STARTGAS * GASPRICE, and determine the sending address from
the signature. Subtract the fee from the sender's account balance and increment the sender's
nonce. If there is not enough balance to spend, return an error.
3. Initialize GAS = STARTGAS, and take off a certain quantity of gas per byte to pay for the bytes in
the transaction.
4. Transfer the transaction value from the sender's account to the receiving account. If the receiving
account does not yet exist, create it. If the receiving account is a contract, run the contract's code
either to completion or until the execution runs out of gas.
5. If the value transfer failed because the sender did not have enough money, or the code execution
ran out of gas, revert all state changes except the payment of the fees, and add the fees to the
miner's account.
6. Otherwise, refund the fees for all remaining gas to the sender, and send the fees paid for gas
consumed to the miner.
Page 15
ethereum.org
For example, suppose that the contract's code is:
if !contract.storage[msg.data[0]]:
contract.storage[msg.data[0]] = msg.data[1]
Note that in reality the contract code is written in the low-level EVM code; this example is written in Serpent,
our high-level language, for clarity, and can be compiled down to EVM code. Suppose that the contract's
storage starts off empty, and a transaction is sent with 10 ether value, 2000 gas, 0.001 ether gasprice, and
two data fields: [ 2, 'CHARLIE' ]
[3]
. The process for the state transition function in this case is as follows:
1. Check that the transaction is valid and well formed.
2. Check that the transaction sender has at least 2000 * 0.001 = 2 ether. If it is, then subtract 2 ether
from the sender's account.
3. Initialize gas = 2000; assuming the transaction is 170 bytes long and the byte-fee is 5, subtract
850 so that there is 1150 gas left.
4. Subtract 10 more ether from the sender's account, and add it to the contract's account.
5. Run the code. In this case, this is simple: it checks if the contract's storage at index 2 is used,
notices that it is not, and so it sets the storage at index 2 to the value CHARLIE. Suppose this takes
187 gas, so the remaining amount of gas is 1150 - 187 = 963
6. Add 963 * 0.001 = 0.963 ether back to the sender's account, and return the resulting state.
If there was no contract at the receiving end of the transaction, then the total transaction fee would simply be
equal to the provided GASPRICE multiplied by the length of the transaction in bytes, and the data sent
alongside the transaction would be irrelevant. Additionally, note that contract-initiated messages can assign
a gas limit to the computation that they spawn, and if the sub-computation runs out of gas it gets reverted
only to the point of the message call. Hence, just like transactions, contracts can secure their limited
computational resources by setting strict limits on the sub-computations that they spawn.
Page 16
ethereum.org
Code Execution
The code in Ethereum contracts is written in a low-level, stack-based bytecode language, referred to as
"Ethereum virtual machine code" or "EVM code". The code consists of a series of bytes, where each byte
represents an operation. In general, code execution is an infinite loop that consists of repeatedly carrying out
the operation at the current program counter (which begins at zero) and then incrementing the program
counter by one, until the end of the code is reached or an error or STOP or RETURN instruction is detected. The
operations have access to three types of space in which to store data:
The stack, a last-in-first-out container to which 32-byte values can be pushed and popped
Memory, an infinitely expandable byte array
The contract's long-term storage, a key/value store where keys and values are both 32
bytes. Unlike stack and memory, which reset after computation ends, storage persists for the long
term.
The code can also access the value, sender and data of the incoming message, as well as block header data,
and the code can also return a byte array of data as an output.
The formal execution model of EVM code is surprisingly simple. While the Ethereum virtual machine is
running, its full computational state can be defined by the tuple (block_state, transaction, message, code,
memory, stack, pc, gas), where block_state is the global state containing all accounts and includes balances
and storage. Every round of execution, the current instruction is found by taking the pc-th byte of code, and
each instruction has its own definition in terms of how it affects the tuple. For example, ADD pops two items off
the stack and pushes their sum, reduces gas by 1 and increments pc by 1, and SSTORE pushes the top two
items off the stack and inserts the second item into the contract's storage at the index specified by the first
item, as well as reducing gas by up to 200 and incrementing pc by 1. Although there are many ways to
optimize Ethereum via just-in-time compilation, a basic implementation of Ethereum can be done in a few
hundred lines of code.
Page 17
ethereum.org
Blockchain and Mining
The Ethereum blockchain is in many ways similar to the Bitcoin blockchain, although it does have some
differences. The main difference between Ethereum and Bitcoin with regard to the blockchain architecture is
that, unlike Bitcoin, Ethereum blocks contain a copy of both the transaction list and the most recent state.
Aside from that, two other values, the block number and the difficulty, are also stored in the block. The block
validation algorithm in Ethereum is as follows:
1. Check if the previous block referenced exists and is valid.
2. Check that the timestamp of the block is greater than that of the referenced previous block and
less than 15 minutes into the future
3. Check that the block number, difficulty, transaction root, uncle root and gas limit (various low-level
Ethereum-specific concepts) are valid.
4. Check that the proof of work on the block is valid.
5. Let S[0] be the STATE_ROOT of the previous block.
6. Let TX be the block's transaction list, with n transactions. For all in in 0...n-1, setS[i+1] =
APPLY(S[i],TX[i]). If any applications returns an error, or if the total gas consumed in the block up
until this point exceeds the GASLIMIT, return an error.
7. Let S_FINAL be S[n], but adding the block reward paid to the miner.
8. Check if S_FINAL is the same as the STATE_ROOT. If it is, the block is valid; otherwise, it is not valid.
Page 18
ethereum.org
The approach may seem highly inefficient at first glance, because it needs to store the entire state with each
block, but in reality efficiency should be comparable to that of Bitcoin. The reason is that the state is stored in
the tree structure, and after every block only a small part of the tree needs to be changed. Thus, in general,
between two adjacent blocks the vast majority of the tree should be the same, and therefore the data can be
stored once and referenced twice using pointers (ie. hashes of subtrees). A special kind of tree known as a
"Patricia tree" is used to accomplish this, including a modification to the Merkle tree concept that allows for
nodes to be inserted and deleted, and not just changed, efficiently. Additionally, because all of the state
information is part of the last block, there is no need to store the entire blockchain history - a strategy which, if
it could be applied to Bitcoin, can be calculated to provide 5-20x savings in space.
Applications
In general, there are three types of applications on top of Ethereum. The first category is financial applications,
providing users with more powerful ways of managing and entering into contracts using their money. This
includes sub-currencies, financial derivatives, hedging contracts, savings wallets, wills, and ultimately even
some classes of full-scale employment contracts. The second category is semi-financial applications, where
money is involved but there is also a heavy non-monetary side to what is being done; a perfect example is
self-enforcing bounties for solutions to computational problems. Finally, there are applications such as online
voting and decentralized governance that are not financial at all.
Token Systems
On-blockchain token systems have many applications ranging from sub-currencies representing assets such
as USD or gold to company stocks, individual tokens representing smart property, secure unforgeable coupons,
and even token systems with no ties to conventional value at all, used as point systems for incentivization.
Token systems are surprisingly easy to implement in Ethereum. The key point to understand is that all a
currency, or token systen, fundamentally is is a database with one operation: subtract X units from A and give
X units to B, with the proviso that (i) X had at least X units before the transaction and (2) the transaction is
approved by A. All that it takes to implement a token system is to implement this logic into a contract.
Page 19
ethereum.org
The basic code for implementing a token system in Serpent looks as follows:
from=msg.sender
to=msg.data[0]
value=msg.data[1]
ifcontract.storage[from]>=value:
contract.storage[from]=contract.storage[from]value
contract.storage[to]=contract.storage[to]+value
This is essentially a literal implementation of the "banking system" state transition function described further
above in this document. A few extra lines of code need to be added to provide for the initial step of distributing
the currency units in the first place and a few other edge cases, and ideally a function would be added to let
other contracts query for the balance of an address. But that's all there is to it. Theoretically, Ethereum-based
token systems acting as sub-currencies can potentially include another important feature that on-chain
Bitcoin-based meta-currencies lack: the ability to pay transaction fees directly in that currency. The way this
would be implemented is that the contract would maintain an ether balance with which it would refund ether
used to pay fees to the sender, and it would refill this balance by collecting the internal currency units that it
takes in fees and reselling them in a constant running auction. Users would thus need to "activate" their
accounts with ether, but once the ether is there it would be reusable because the contract would refund it each
time.
Financial derivatives and Stable-Value Currencies
Financial derivatives are the most common application of a "smart contract", and one of the simplest to
implement in code. The main challenge in implementing financial contracts is that the majority of them
require reference to an external price ticker; for example, a very desirable application is a smart contract that
hedges against the volatility of ether (or another cryptocurrency) with respect to the US dollar, but doing this
requires the contract to know what the value of ETH/USD is. The simplest way to do this is through a "data
feed" contract maintained by a specific party (eg. NASDAQ) designed so that that party has the ability to
update the contract as needed, and providing an interface that allows other contracts to send a message to
that contract and get back a response that provides the price.
Given that critical ingredient, the hedging contract would look as follows:
1. Wait for party A to input 1000 ether.
2. Wait for party B to input 1000 ether.
3. Record the USD value of 1000 ether, calculated by querying the data feed contract, in storage, say this
is $x.
4. After 30 days, allow A or B to "ping" the contract in order to send $x worth of ether (calculated by
querying the data feed contract again to get the new price) to A and the rest to B.
Page 20
ethereum.org
Such a contract would have significant potential in crypto-commerce. One of the main problems cited about
cryptocurrency is the fact that it's volatile; although many users and merchants may want the security and
convenience of dealing with cryptographic assets, they many not wish to face that prospect of losing 23% of
the value of their funds in a single day. Up until now, the most commonly proposed solution has been
issuer-backed assets; the idea is that an issuer creates a sub-currency in which they have the right to issue
and revoke units, and provide one unit of the currency to anyone who provides them (offline) with one unit of a
specified underlying asset (eg. gold, USD). The issuer then promises to provide one unit of the underlying
asset to anyone who sends back one unit of the crypto-asset. This mechanism allows any non-cryptographic
asset to be "uplifted" into a cryptographic asset, provided that the issuer can be trusted.
In practice, however, issuers are not always trustworthy, and in some cases the banking infrastructure is too
weak, or too hostile, for such services to exist. Financial derivatives provide an alternative. Here, instead of a
single issuer providing the funds to back up an asset, a decentralized market of speculators, betting that the
price of a cryptographic reference asset will go up, plays that role. Unlike issuers, speculators have no option to
default on their side of the bargain because the hedging contract holds their funds in escrow. Note that this
approach is not fully decentralized, because a trusted source is still needed to provide the price ticker,
although arguably even still this is a massive improvement in terms of reducing infrastructure requirements
(unlike being an issuer, issuing a price feed requires no licenses and can likely be categorized as free speech)
and reducing the potential for fraud.
Page 21
ethereum.org
Identity and Reputation Systems
The earliest alternative cryptocurrency of all, Namecoin, attempted to use a Bitcoin-like blockchain to provide a
name registration system, where users can register their names in a public database alongside other data.
The major cited use case is for a DNS system, mapping domain names like "bitcoin.org" (or, in Namecoin's
case, "bitcoin.bit") to an IP address. Other use cases include email authentication and potentially more
advanced reputation systems. Here is the basic contract to provide a Namecoin-like name registration system
on Ethereum:
if!contract.storage[tx.data[0]]:
contract.storage[tx.data[0]]=tx.data[1]
The contract is very simple; all it is is a database inside the Ethereum network that can be added to, but not
modified or removed from. Anyone can register a name with some value, and that registration then sticks
forever. A more sophisticated name registration contract will also have a "function clause" allowing other
contracts to query it, as well as a mechanism for the "owner" (ie. the first registerer) of a name to change the
data or transfer ownership. One can even add reputation and web-of-trust functionality on top.
Decentralized File Storage
Over the past few years, there have emerged a number of popular online file storage startups, the most
prominent being Dropbox, seeking to allow users to upload a backup of their hard drive and have the service
store the backup and allow the user to access it in exchange for a monthly fee. However, at this point the file
storage market is at times relatively inefficient; a cursory look at various existing solutions shows that,
particularly at the "uncanny valley" 20-200 GB level at which neither free quotas nor enterprise-level discounts
kick in, monthly prices for mainstream file storage costs are such that you are paying for more than the cost of
the entire hard drive in a single month. Ethereum contracts can allow for the development of a decentralized
file storage ecosystem, where individual users can earn small quantities of money by renting out their own
hard drives and unused space can be used to further drive down the costs of file storage.
The key underpinning piece of such a device would be what we have termed the "decentralized Dropbox
contract". This contract works as follows. First, one splits the desired data up into blocks, encrypting each block
for privacy, and builds a Merkle tree out of it. One then makes a contract with the rule that, every N blocks, the
contract would pick a random index in the Merkle tree (using the previous block hash, accessible from
contract code, as a source of randomness), and give X ether to the first entity to supply a transaction with a
Page 22
ethereum.org
simplified payment verification-like proof of ownership of the block at that particular index in the tree. When a
user wants to re-download their file, they can use a micropayment channel protocol (eg. pay 1 szabo per 32
kilobytes) to recover the file; the most fee-efficient approach is for the payer not to publish the transaction until
the end, instead replacing the transaction with a slightly more lucrative one with the same nonce after every
32 kilobytes.
An important feature of the protocol is that, although it may seem like one is trusting many random nodes not
to decide to forget the file, one can reduce that risk down to near-zero by splitting the file into many pieces via
secret sharing, and watching the contracts to see each piece is still in some node's possession. If a contract is
still paying out money, that provides a cryptographic proof that someone out there is still storing the file.
Decentralized Autonomous Organizations
The general concept of a "decentralized organization" is that of a virtual entity that has a certain set of
members or shareholders which, perhaps with a 67% majority, have the right to spend the entity's funds and
modify its code. The members would collectively decide on how the organization should allocate its funds.
Methods for allocating a DAO's funds could range from bounties, salaries to even more exotic mechanisms
such as an internal currency to reward work. This essentially replicates the legal trappings of a traditional
company or nonprofit but using only cryptographic blockchain technology for enforcement. So far much of the
talk around DAOs has been around the "capitalist" model of a "decentralized autonomous corporation" (DAC)
with dividend-receiving shareholders and tradable shares; an alternative, perhaps described as a
"decentralized autonomous community", would have all members have an equal share in the decision
making and require 67% of existing members to agree to add or remove a member. The requirement that one
person can only have one membership would then need to be enforced collectively by the group.
A general outline for how to code a DO is as follows. The simplest design is simply a piece of self-modifying
code that changes if two thirds of members agree on a change. Although code is theoretically immutable, one
can easily get around this and have de-facto mutability by having chunks of the code in separate contracts,
and having the address of which contracts to call stored in the modifiable storage. In a simple
implementation of such a DAO contract, there would be three transaction types, distinguished by the data
provided in the transaction:
[0,i,K,V] to register a proposal with index i to change the address at storage index K to
value V
[0,i] to register a vote in favor of proposal i
[2,i] to finalize proposal i if enough votes have been made
The contract would then have clauses for each of these. It would maintain a record of all open storage
changes, along with a list of who voted for them. It would also have a list of all members. When any storage
Page 23
ethereum.org
change gets to two thirds of members voting for it, a finalizing transaction could execute the change. A more
sophisticated skeleton would also have built-in voting ability for features like sending a transaction, adding
members and removing members, and may even provide for Liquid Democracy-style vote delegation (ie.
anyone can assign someone to vote for them, and assignment is transitive so if A assigns B and B assigns C
then C determines A's vote). This design would allow the DO to grow organically as a decentralized
community, allowing people to eventually delegate the task of filtering out who is a member to specialists,
although unlike in the "current system" specialists can easily pop in and out of existence over time as
individual community members change their alignments.
An alternative model is for a decentralized corporation, where any account can have zero or more shares, and
two thirds of the shares are required to make a decision. A complete skeleton would involve asset
management functionality, the ability to make an offer to buy or sell shares, and the ability to accept offers
(preferably with an order-matching mechanism inside the contract). Delegation would also exist Liquid
Democracy-style, generalizing the concept of a "board of directors".
In the future, more advanced mechanisms for organizational governance may be implemented; it is at this
point that a decentralized organization (DO) can start to be described as a decentralized autonomous
organization (DAO). The difference between a DO and a DAO is fuzzy, but the general dividing line is whether
the governance is generally carried out via a political-like process or an “automatic” process; a good intuitive
test is the “no common language” criterion: can the organization still function if no two members spoke the
same language? Clearly, a simple traditional shareholder-style corporation would fail, whereas something like
the Bitcoin protocol would be much more likely to succeed. Robin Hanson’s futarchy, a mechanism for
organizational governance via prediction markets, is a good example of what truly “autonomous” governance
might look like. Note that one should not necessarily assume that all DAOs are superior to all DOs; automation
is simply a paradigm that is likely to have have very large benefits in certain particular places and may not be
practical in others, and many semi-DAOs are also likely to exist.
Further Applications
1. Savings wallets. Suppose that Alice wants to keep her funds safe, but is worried that she will lose or
someone will hack her private key. She puts ether into a contract with Bob, a bank, as follows:
Alice alone can withdraw a maximum of 1% of the funds per day.
Bob alone can withdraw a maximum of 1% of the funds per day, but Alice has the ability to make a
transaction with her key shutting off this ability.
Alice and Bob together can withdraw anything.
Normally, 1% per day is enough for Alice, and if Alice wants to withdraw more she can contact Bob for help. If
Alice's key gets hacked, she runs to Bob to move the funds to a new contract. If she loses her key, Bob will get
the funds out eventually. If Bob turns out to be malicious, then she can turn off his ability to withdraw.
Page 24
ethereum.org
2. Crop insurance. One can easily make a financial derivatives contract but using a data feed of the weather
instead of any price index. If a farmer in Iowa purchases a derivative that pays out inversely based on the
precipitation in Iowa, then if there is a drought, the farmer will automatically receive money and if there is
enough rain the farmer will be happy because their crops would do well.
3. A decentralized data feed. For financial contracts for difference, it may actually be possible to decentralize
the data feed via a protocol called "SchellingCoin". SchellingCoin basically works as follows: N parties all put
into the system the value of a given datum (eg. the ETH/USD price), the values are sorted, and everyone
between the 25th and 75th percentile gets one token as a reward. Everyone has the incentive to provide the
answer that everyone else will provide, and the only value that a large number of players can realistically
agree on is the obvious default: the truth. This creates a decentralized protocol that can theoretically provide
any number of values, including the ETH/USD price, the temperature in Berlin or even the result of a particular
hard computation.
4. Smart multi-signature escrow. Bitcoin allows multisignature transaction contracts where, for example,
three out of a given five keys can spend the funds. Ethereum allows for more granularity; for example, four out
of five can spend everything, three out of five can spend up to 10% per day, and two out of five can spend up to
0.5% per day. Additionally, Ethereum multisig is asynchronous - two parties can register their signatures on
the blockchain at different times and the last signature will automatically send the transaction.
5. Cloud computing. The EVM technology can also be used to create a verifiable computing environment,
allowing users to ask others to carry out computations and then optionally ask for proofs that computations at
certain randomly selected checkpoints were done correctly. This allows for the creation of a cloud computing
market where any user can participate with their desktop, laptop or specialized server, and spot-checking
together with security deposits can be used to ensure that the system is trustworthy (ie. nodes cannot
profitably cheat). Although such a system may not be suitable for all tasks; tasks that require a high level of
inter-process communication, for example, cannot easily be done on a large cloud of nodes. Other tasks,
however, are much easier to parallelize; projects like SETI@home, folding@home and genetic algorithms can
easily be implemented on top of such a platform.
6. Peer-to-peer gambling. Any number of peer-to-peer gambling protocols, such as Frank Stajano and
Richard Clayton's Cyberdice, can be implemented on the Ethereum blockchain. The simplest gambling
protocol is actually simply a contract for difference on the next block hash, and more advanced protocols can
be built up from there, creating gambling services with near-zero fees that have no ability to cheat.
7. Prediction markets. Provided an oracle or SchellingCoin, prediction markets are also easy to implement,
and prediction markets together with SchellingCoin may prove to be the first mainstream application of
futarchy as a governance protocol for decentralized organizations.
8. On-chain decentralized marketplaces, using the identity and reputation system as a base.
Page 25
ethereum.org
Miscellanea And Concerns
Modified GHOST Implementation
The "Greedy Heaviest Observed Subtree" (GHOST) protocol is an innovation first introduced by Yonatan
Sompolinsky and Aviv Zohar in December 2013. The motivation behind GHOST is that blockchains with fast
confirmation times currently suffer from reduced security due to a high stale rate - because blocks take a
certain time to propagate through the network, if miner A mines a block and then miner B happens to mine
another block before miner A's block propagates to B, miner B's block will end up wasted and will not contribute
to network security. Furthermore, there is a centralization issue: if miner A is a mining pool with 30%
hashpower and B has 10% hashpower, A will have a risk of producing a stale block 70% of the time (since the
other 30% of the time A produced the last block and so will get mining data immediately) whereas B will have
a risk of producing a stale block 90% of the time. Thus, if the block interval is short enough for the stale rate to
be high, A will be substantially more efficient simply by virtue of its size. With these two effects combined,
blockchains which produce blocks quickly are very likely to lead to one mining pool having a large enough
percentage of the network hashpower to have de facto control over the mining process.
As described by Sompolinsky and Zohar, GHOST solves the first issue of network security loss by including
stale blocks in the calculation of which chain is the "longest"; that is to say, not just the parent and further
ancestors of a block, but also the stale children of the block's ancestors (in Ethereum jargon, "uncles") are
added to the calculation of which block has the largest total proof of work backing it. To solve the second issue
of centralization bias, we go beyond the protocol described by Sompolinsky and Zohar, and also allow stales to
be registered into the main chain to receive a block reward: a stale block receives 93.75% of its base reward,
and the nephew that includes the stale block receives the remaining 6.25%. Transaction fees, however, are not
awarded to uncles.
Ethereum implements a simplified version of GHOST which only goes down five levels. Specifically, a stale
block can only be included as an uncle by the 2nd to 5th generation child of its parent, and not any block with
a more distant relation (eg. 6th generation child of a parent, or 3rd generation child of a grandparent). This
was done for several reasons. First, unlimited GHOST would include too many complications into the
calculation of which uncles for a given block are valid. Second, unlimited GHOST with compensation as used
in Ethereum removes the incentive for a miner to mine on the main chain and not the chain of a public
attacker. Finally, calculations show that five-level GHOST with incentivization is over 95% efficient even with a
15s block time, and miners with 25% hashpower show centralization gains of less than 3%.
Page 26
ethereum.org
Fees
Because every transaction published into the blockchain imposes on the network the cost of needing to
download and verify it, there is a need for some regulatory mechanism, typically involving transaction fees, to
prevent abuse. The default approach, used in Bitcoin, is to have purely voluntary fees, relying on miners to act
as the gatekeepers and set dynamic minimums. This approach has been received very favorably in the
Bitcoin community particularly because it is "market-based", allowing supply and demand between miners
and transaction senders determine the price. The problem with this line of reasoning is, however, that
transaction processing is not a market; although it is intuitively attractive to construe transaction processing
as a service that the miner is offering to the sender, in reality every transaction that a miner includes will need
to be processed by every node in the network, so the vast majority of the cost of transaction processing is borne
by third parties and not the miner that is making the decision of whether or not to include it. Hence,
tragedy-of-the-commons problems are very likely to occur.
However, as it turns out this flaw in the market-based mechanism, when given a particular inaccurate
simplifying assumption, magically cancels itself out. The argument is as follows. Suppose that:
1. A transaction leads to k operations, offering the reward kR to any miner that includes it where R is
set by the sender and k and R are (roughly) visible to the miner beforehand.
2. An operation has a processing cost of C to any node (ie. all nodes have equal efficiency)
3. There are N mining nodes, each with exactly equal processing power (ie. 1/N of total)
4. No non-mining full nodes exist.
A miner would be willing to process a transaction if the expected reward is greater than the cost. Thus, the
expected reward is kR/N since the miner has a 1/N chance of processing the next block, and the processing
cost for the miner is simply kC. Hence, miners will include transactions where kR/N > kC, or R > NC. Note that R
is the per-operation fee provided by the sender, and is thus a lower bound on the benefit that the sender derives
from the transaction, and NC is the cost to the entire network together of processing an operation. Hence,
miners have the incentive to include only those transactions for which the total utilitarian benefit exceeds the
cost.
However, there are several important deviations from those assumptions in reality:
1. The miner does pay a higher cost to process the transaction than the other verifying nodes, since
the extra verification time delays block propagation and thus increases the chance the block will
become a stale.
2. There do exist non-mining full nodes.
Page 27
ethereum.org
3. The mining power distribution may end up radically inegalitarian in practice.
4. Speculators, political enemies and crazies whose utility function includes causing harm to the
network do exist, and they can cleverly set up contracts whose cost is much lower than the cost
paid by other verifying nodes.
Point 1 above provides a tendency for the miner to include fewer transactions, and point 2 increases NC;
hence, these two effects at least partially cancel each other out. Points 3 and 4 are the major issue; to solve
them we simply institute a floating cap: no block can have more operations than BLK_LIMIT_FACTOR times the
long-term exponential moving average. Specifically:
blk.oplimit = floor((blk.parent.oplimit * (EMAFACTOR - 1) + floor(parent.opcount * BLK_LIMIT_FACTOR)) /
EMA_FACTOR)
BLK_LIMIT_FACTOR and EMA_FACTOR are constants that will be set to 65536 and 1.5 for the time being, but
will likely be changed after further analysis.
Computation And Turing-Completeness
An important note is that the Ethereum virtual machine is Turing-complete; this means that EVM code can
encode any computation that can be conceivably carried out, including infinite loops. EVM code allows looping
in two ways. First, there is a JUMP instruction that allows the program to jump back to a previous spot in the
code, and a JUMPI instruction to do conditional jumping, allowing for statements like while x < 27: x = x * 2.
Second, contracts can call other contracts, potentially allowing for looping through recursion. This naturally
leads to a problem: can malicious users essentially shut miners and full nodes down by forcing them to enter
into an infinite loop? The issue arises because of a problem in computer science known as the halting problem:
there is no way to tell, in the general case, whether or not a given program will ever halt.
As described in the state transition section, our solution works by requiring a transaction to set a maximum
number of computational steps that it is allowed to take, and if execution takes longer computation is reverted
but fees are still paid. Messages work in the same way. To show the motivation behind our solution, consider
the following examples:
An attacker creates a contract which runs an infinite loop, and then sends a transaction
activating that loop to the miner. The miner will process the transaction, running the infinite loop,
and wait for it to run out of gas. Even though the execution runs out of gas and stops halfway
through, the transaction is still valid and the miner still claims the fee from the attacker for each
computational step.
An attacker creates a very long infinite loop with the intent of forcing the miner to keep
computing for such a long time that by the time computation finishes a few more blocks will have
come out and it will not be possible for the miner to include the transaction to claim the fee. However,
Page 28
ethereum.org
the attacker will be required to submit a value for STARTGAS limiting the number of computational
steps that execution can take, so the miner will know ahead of time that the computation will take an
excessively large number of steps.
An attacker sees a contract with code of some form like send(A,contract.storage[A]);
contract.storage[A] = 0, and sends a transaction with just enough gas to run the first step but not the
second (ie. making a withdrawal but not letting the balance go down). The contract author does not
need to worry about protecting against such attacks, because if execution stops halfway through the
changes get reverted.
A financial contract works by taking the median of nine proprietary data feeds in order to
minimize risk. An attacker takes over one of the data feeds, which is designed to be modifiable via
the variable-address-call mechanism described in the section on DAOs, and converts it to run an
infinite loop, thereby attempting to force any attempts to claim funds from the financial contract to
run out of gas. However, the financial contract can set a gas limit on the message to prevent this
problem.
The alternative to Turing-completeness is Turing-incompleteness, where JUMP and JUMPI do not exist and
only one copy of each contract is allowed to exist in the call stack at any given time. With this system, the fee
system described and the uncertainties around the effectiveness of our solution might not be necessary, as
the cost of executing a contract would be bounded above by its size. Additionally, Turing-incompleteness is not
even that big a limitation; out of all the contract examples we have conceived internally, so far only one
required a loop, and even that loop could be removed by making 26 repetitions of a one-line piece of code.
Given the serious implications of Turing-completeness, and the limited benefit, why not simply have a
Turing-incomplete language? In reality, however, Turing-incompleteness is far from a neat solution to the
problem. To see why, consider the following contracts:
C0:call(C1);call(C1);
C1:call(C2);call(C2);
C2:call(C3);call(C3);
...
C49:call(C50);call(C50);
C50:(run one step of a program and record the change in storage)
Now, send a transaction to A. Thus, in 51 transactions, we have a contract that takes up 2
50
computational
steps. Miners could try to detect such logic bombs ahead of time by maintaining a value alongside each
contract specifying the maximum number of computational steps that it can take, and calculating this for
contracts calling other contracts recursively, but that would require miners to forbid contracts that create
other contracts (since the creation and execution of all 50 contracts above could easily be rolled into a single
contract). Another problematic point is that the address field of a message is a variable, so in general it may
not even be possible to tell which other contracts a given contract will call ahead of time. Hence, all in all, we
have a surprising conclusion: Turing-completeness is surprisingly easy to manage, and the lack of
Page 29
ethereum.org
Turing-completeness is equally surprisingly difficult to manage unless the exact same controls are in place -
but in that case why not just let the protocol be Turing-complete?
Currency And Issuance
The Ethereum network includes its own built-in currency, ether, which serves the dual purpose of providing a
primary liquidity layer to allow for efficient exchange between various types of digital assets and, more
importantly, of providing a mechanism for paying transaction fees. For convenience and to avoid future
argument (see the current mBTC/uBTC/satoshi debate in Bitcoin), the denominations will be pre-labelled:
1: wei
10^12: szabo
10^15: finney
10^18: ether
This should be taken as an expanded version of the concept of "dollars" and "cents" or "BTC" and "satoshi". In the near future, we expect "ether" to be
used for ordinary transactions, "finney" for microtransactions and "szabo" and "wei" for technical discussions around fees and protocol
implementation.
The issuance model will be as follows:
Ether will be released in a currency sale at the price of 1337-2000 ether per BTC, a
mechanism intended to fund the Ethereum organization and pay for development that has been
used with success by a number of other cryptographic platforms. Earlier buyers will benefit from larger
discounts. The BTC received from the sale will be used entirely to pay salaries and bounties to
developers, researchers and projects in the cryptocurrency ecosystem.
0.099x the total amount sold will be allocated to early contributors who participated in
development before BTC funding or certainty of funding was available, and another 0.099x will be
allocated to long-term research projects.
0.26x the total amount sold will be allocated to miners per year forever after that point.
Page 30
ethereum.org
Issuance Breakdown
The permanent linear supply growth model reduces the risk of what some see as excessive wealth
concentration in Bitcoin, and gives individuals living in present and future eras a fair chance to acquire
currency units, while at the same time discouraging depreciation of ether because the "supply growth rate" as
a percentage still tends to zero over time. We also theorize that because coins are always lost over time due to
carelessness, death, etc, and coin loss can be modeled as a percentage of the total supply per year, that the
total currency supply in circulation will in fact eventually stabilize at a value equal to the annual issuance
divided by the loss rate (eg. at a loss rate of 1%, once the supply reaches 26X then 0.26X will be mined and
0.26X lost every year, creating an equilibrium).
Group
At launch
After 1 year
After 5 years
Currency units
1.198X
1.458X
2.498X
Purchasers
83.5%
68.6%
40.0%
Early contributor distribution
8.26%
6.79%
3.96%
Long-term endowment
8.26%
6.79%
3.96%
Miners
0%
17.8%
52.0%
Despite the linear currency issuance, just like with Bitcoin over time the supply growth rate nevertheless tends
to zero.
Page 31
ethereum.org
Mining Centralization
The Bitcoin mining algorithm basically works by having miners compute SHA256 on slightly modified
versions of the block header millions of times over and over again, until eventually one node comes up with a
version whose hash is less than the target (currently around 2
190
). However, this mining algorithm is
vulnerable to two forms of centralization. First, the mining ecosystem has come to be dominated by ASICs
(application-specific integrated circuits), computer chips designed for, and therefore thousands of times more
efficient at, the specific task of Bitcoin mining. This means that Bitcoin mining is no longer a highly
decentralized and egalitarian pursuit, requiring millions of dollars of capital to effectively participate in.
Second, most Bitcoin miners do not actually perform block validation locally; instead, they rely on a
centralized mining pool to provide the block headers. This problem is arguably worse: as of the time of this
writing, the top two mining pools indirectly control roughly 50% of processing power in the Bitcoin network,
although this is mitigated by the fact that miners can switch to other mining pools if a pool or coalition
attempts a 51% attack.
The current intent at Ethereum is to use a mining algorithm based on randomly generating a unique hash
function for every 1000 nonces, using a sufficiently broad range of computation to remove the benefit of
specialized hardware. Such a strategy will certainly not reduce the gain of centralization to zero, but it does
not need to. Note that each individual user, on their private laptop or desktop, can perform a certain quantity of
mining activity almost for free, paying only electricity costs, but after the point of 100% CPU utilization of their
computer additional mining will require them to pay for both electricity and hardware. ASIC mining companies
need to pay for electricity and hardware starting from the first hash. Hence, if the centralization gain can be
kept to below this ratio, (E + H) / E, then even if ASICs are made there will still be room for ordinary miners.
Additionally, we intend to design the mining algorithm so that mining requires access to the entire
blockchain, forcing miners to store the entire blockchain and at least be capable of verifying every transaction.
This removes the need for centralized mining pools; although mining pools can still serve the legitimate role
of evening out the randomness of reward distribution, this function can be served equally well by peer-to-peer
pools with no central control. It additionally helps fight centralization, by increasing the number of full nodes in
the network so that the network remains reasonably decentralized even if most ordinary users prefer light
clients.
Page 32
ethereum.org
Scalability
One common concern about Ethereum is the issue of scalability. Like Bitcoin, Ethereum suffers from the flaw
that every transaction needs to be processed by every node in the network. With Bitcoin, the size of the current
blockchain rests at about 20 GB, growing by about 1 MB per hour. If the Bitcoin network were to process Visa's
2000 transactions per second, it would grow by 1 MB per three seconds (1 GB per hour, 8 TB per year).
Ethereum is likely to suffer a similar growth pattern, worsened by the fact that there will be many applications
on top of the Ethereum blockchain instead of just a currency as is the case with Bitcoin, but ameliorated by the
fact that Ethereum full nodes need to store just the state instead of the entire blockchain history.
The problem with such a large blockchain size is centralization risk. If the blockchain size increases to, say,
100 TB, then the likely scenario would be that only a very small number of large businesses would run full
nodes, with all regular users using light SPV nodes. In such a situation, there arises the potential concern that
the full nodes could band together and all agree to cheat in some profitable fashion (eg. change the block
reward, give themselves BTC). Light nodes would have no way of detecting this immediately. Of course, at
least one honest full node would likely exist, and after a few hours information about the fraud would trickle out
through channels like Reddit, but at that point it would be too late: it would be up to the ordinary users to
organize an effort to blacklist the given blocks, a massive and likely infeasible coordination problem on a
similar scale as that of pulling off a successful 51% attack. In the case of Bitcoin, this is currently a problem,
but there exists a blockchain modification suggested by Peter Todd which will alleviate this issue.
In the near term, Ethereum will use two additional strategies to cope with this problem. First, because of the
blockchain-based mining algorithms, at least every miner will be forced to be a full node, creating a lower
bound on the number of full nodes. Second and more importantly, however, we will include an intermediate
state tree root in the blockchain after processing each transaction. Even if block validation is centralized, as
long as one honest verifying node exists, the centralization problem can be circumvented via a verification
protocol. If a miner publishes an invalid block, that block must either be badly formatted, or the state S[n] is
incorrect. Since S[0] is known to be correct, there must be some first state S[i] that is incorrect where S[i-1] is
correct. The verifying node would provide the index i, along with a "proof of invalidity" consisting of the subset
of Patricia tree nodes needing to process APPLY(S[i-1],TX[i]) -> S[i]. Nodes would be able to use those nodes to
run that part of the computation, and see that the S[i] generated does not match the S[i] provided.
Another, more sophisticated, attack would involve the malicious miners publishing incomplete blocks, so the
full information does not even exist to determine whether or not blocks are valid. The solution to this is a
challenge-response protocol: verification nodes issue "challenges" in the form of target transaction indices,
and upon receiving a node a light node treats the block as untrusted until another node, whether the miner or
another verifier, provides a subset of Patricia nodes as a proof of validity.
Page 33
ethereum.org
Putting It All Together: Decentralized Applications
The contract mechanism described above allows anyone to build what is essentially a command line
application run on a virtual machine that is executed by consensus across the entire network, allowing it to
modify a globally accessible state as its “hard drive”. However, for most people, the command line interface
that is the transaction sending mechanism is not sufficiently user-friendly to make decentralization an
attractive mainstream alternative. To this end, a complete “decentralized application” should consist of both
low-level business-logic components, whether implemented entirely on Ethereum, using a combination of
Ethereum and other systems (eg. a P2P messaging layer, one of which is currently planned to be put into the
Ethereum clients) or other systems entirely, and high-level graphical user interface components. The
Ethereum client’s design is to serve as a web browser, but include support for a “eth” Javascript API object,
which specialized web pages viewed in the client will be able to use to interact with the Ethereum blockchain.
From the point of view of the “traditional” web, these web pages are entirely static content, since the blockchain
and other decentralized protocols will serve as a complete replacement for the server for the purpose of
handling user-initiated requests. Eventually, decentralized protocols, hopefully themselves in some fashion
using Ethereum, may be used to store the web pages themselves.
Conclusion
The Ethereum protocol was originally conceived as an upgraded version of a cryptocurrency, providing
advanced features such as on-blockchain escrow, withdrawal limits and financial contracts, gambling
markets and the like via a highly generalized programming language. The Ethereum protocol would not
"support" any of the applications directly, but the existence of a Turing-complete programming language
means that arbitrary contracts can theoretically be created for any transaction type or application. What is
more interesting about Ethereum, however, is that the Ethereum protocol moves far beyond just currency.
Protocols and decentralized applications around decentralized file storage, decentralized computation and
decentralized prediction markets, among dozens of other such concepts, have the potential to substantially
increase the efficiency of the computational industry, and provide a massive boost to other peer-to-peer
protocols by adding for the first time an economic layer. Finally, there is also a substantial array of
applications that have nothing to do with money at all.
The concept of an arbitrary state transition function as implemented by the Ethereum protocol provides for a
platform with unique potential; rather than being a closed-ended, single-purpose protocol intended for a
specific array of applications in data storage, gambling or finance, Ethereum is open-ended by design, and we
believe that it is extremely well-suited to serving as a foundational layer for a very large number of both
financial and non-financial protocols in the years to come.
Page 34
ethereum.org
Notes and Further Reading
Notes
1. A sophisticated reader may notice that in fact a Bitcoin address is the hash of the elliptic curve
public key, and not the public key itself. However, it is in fact perfectly legitimate cryptographic terminology to
refer to the pubkey hash as a public key itself. This is because Bitcoin's cryptography can be considered to be a
custom digital signature algorithm, where the public key consists of the hash of the ECC pubkey, the signature
consists of the ECC pubkey concatenated with the ECC signature, and the verification algorithm involves
checking the ECC pubkey in the signature against the ECC pubkey hash provided as a public key and then
verifying the ECC signature against the ECC pubkey.
2. Technically, the median of the 11 previous blocks.
3. Internally, 2 and "CHARLIE" are both numbers, with the latter being in big-endian base 256
representation. Numbers can be at least 0 and at most 2^256-1.
Further Reading
1. Intrinsic value: https://tinyurl.com/BitcoinMag-IntrinsicValue
2. Smart property: https://en.bitcoin.it/wiki/Smart_Property
3. Smart contracts: https://en.bitcoin.it/wiki/Contracts
4. B-money: http://www.weidai.com/bmoney.txt
5. Reusable proofs of work: http://www.finney.org/~hal/rpow/
6. Secure property titles with owner authority: http://szabo.best.vwh.net/securetitle.html
7. Bitcoin whitepaper: http://bitcoin.org/bitcoin.pdf
8. Namecoin: https://namecoin.org/
9. Zooko's triangle: http://en.wikipedia.org/wiki/Zooko's_triangle
10. Colored coins whitepaper: https://tinyurl.com/coloredcoin-whitepaper
11. Mastercoin whitepaper: https://github.com/mastercoin-MSC/spec
12. Decentralized autonomous corporations, Bitcoin Magazine: https://tinyurl.com/Bootstrapping-DACs
13. Simplified payment verification:https://en.bitcoin.it/wiki/Scalability#Simplifiedpaymentverification
14. Merkle trees: http://en.wikipedia.org/wiki/Merkle_tree
15. Patricia trees: http://en.wikipedia.org/wiki/Patricia_tree
16. GHOST: http://www.cs.huji.ac.il/~avivz/pubs/13/btc_scalability_full.pdf
17. StorJ and Autonomous Agents, Jeff Garzik: https://tinyurl.com/storj-agents
18. Mike Hearn on Smart Property at Turing Festival: http://www.youtube.com/watch?v=Pu4PAMFPo5Y
Page 35
ethereum.org
19. Ethereum RLP: https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-RLP
20. Ethereum Merkle Patricia trees: https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-Patricia-Tree
21. Peter Todd on Merkle sum trees:http://sourceforge.net/p/bitcoin/mailman/message/31709140/
Page 36
ethereum.org

Discussion

Could someone explain what a Hashcash puzzle is? Testing the page: Inline-style: ![alt text](https://github.com/adam-p/markdown-here/raw/master/src/common/images/icon48.png "Logo Title Text 1") Here is an example of Bitcoin’s scripting language which calculates $2 + 7 - 3 + 1$: `2 7 OP_ADD 3 OP_SUB 1 OP_ADD 7 OP_EQUAL` This really spiked my interest and I found it to be a very neat protocol to decentralize data feeds. You might want to [read this blogpost to learn more about the concepts behind this](http://lesswrong.com/lw/dc7/nash_equilibria_and_schelling_points/). At the moment the Bitcoin blockchain takes up around 142GB and the Ethereum blockchain takes up around 75GB. Sybil attack in computer security is an attack wherein a reputation system is subverted by forging identities in peer-to-peer networks.[ I have read, from other authors, that the EVM is "almost" Turing complete. Is this just wrong or are there more subtle details around the implementation that makes the EVM not stricly Turing complete? [Here is the annotated version](http://fermatslibrary.com/s/bitcoin) of Bitcoin’s whitepaper in case you want to check it out. What he is stating here is that in bitcoin, a single UTXO cannot decide by itself (in its script) how it is going to be split / spent. In other words, if you have a UTXO of 15BTC and you want to spend 5BTC to buy something, you have to create a 2 UTXO: - Send 5BTC to seller - Send 10BTC back to yourself A Sybil attack involves an entity subverting a peer-to-peer system by creating a large number of fake/pseudonymous entities. The idea is that they are able to gain a disproportionally large influence by effectively controlling a large number of nodes participating in the protocol. Networks such as the Tor anonymity network have been targets of large Sybil attacks. thanks. Could someone explain step-by-step what is going on in this figure? What do each of the hashes mean? What does the number after the colon indicate? Vitalik Buterin (born in 1994) is a Russian programmer and the co-founder of Ethereum. He grew up in Canada and was recognized as a gifted child. From an early age he was drawn to math, programming and economics. At the age of 17 he learned about Bitcoin from his father and went on to start [Bitcoin Magazine](https://bitcoinmagazine.com/). He published Ethereum’s whitepaper in 2013 and in 2014 he dropped out of University of Waterloo and received a Thiel Fellowship to work on Ethereum full-time. ![Vitalik](http://i.imgur.com/Kw4aLu6.jpg) Can someone expand on the significance of the 2 hours? That's the time it's assumed (in the worst case) that all/most nodes have received news of the block? What would happen if this was 10 s, or 10 days (in the extremes)? [Chaumian blinding](http://www.hit.bme.hu/~buttyan/courses/BMEVIHIM219/2009/Chaum.BlindSigForPayment.1982.PDF) is a concept used in centralized cryptocurrencies that allows users to rely on a centralized authority to issue digital coins for them, but enables users to spend them privately. In other words, the central authority can’t figure out that it issued a digital coin to user A which then used that coin to buy something from user B. Chaumian blinding relies on the concept of **blind signatures**. Suppose Alice wants Bob to sign a message `m`, but does not want Bob to know the content of the message. Blind signatures work the following way: - Alice "blinds" the message `m`, with some random number `b` (the blinding factor). This results in `blind(m,b)` - Bob signs this message, resulting in `sign(blind(m,b),d)`, where `d` is Bob's private key - Alice then unblinds the message using `b`, resulting in `unblind(sign(blind(m,b),d),b)`. The functions are designed so that this reduces to `sign(m,d)`, i.e. Bob's signature on `m` *Hashcash* is a proof-of-work system that can be used for instance to fight email spam. The idea is that in order to send an email the sender has to spend some CPU resource (i.e. perform a costly operation) to come up with a value that is attached to the email header. This will not affect you much if you are a regular user using email in a legitimate way. However, a spammer, who might be sending millions of emails per day, cannot afford to spend the aggregate amount of CPU power necessary to send all of those emails (it would just be too expensive to have that many computers computing all of the proofs of work necessary to send the emails) In a proof of work you usually have a challenge string *c* and you are looking for a nonce *n* such that $hash(c + n)$ will result in a string with a certain number of leading zeroes. Let’s say our challenge string was *“Hello, world!”* and our target was to get a *SHA-256* hash beginning with ‘000’. One way to go about it is to start with a nonce of ‘0’ and progressively increment it until you get an hash starting with ‘000’. In this case that would take 4251 tries (which happens to have 4 leading zeroes): ``` SHA-256("Hello, world!0") = 1312af17... SHA-256("Hello, world!1") = e9afc424... ... SHA-256("Hello, world!4249") = c004190b... SHA-256("Hello, world!4250") = 0000c3af... ``` Computing 4251 hashes on a modern computer is not that much work, however you can easily ramp up the difficulty by increasing the leading number of zeroes required for the proof of work. As stated, DAOs are decentralized entities (more specifically long lived contracts in Ethereum) that allow users to come together, pool resources and exercise voting power to decide how the DAO should run. In May of 2016 a DAO (known simply as “The DAO”) on Ethereum raised more than $160m worth of Ether from thousands of participants (which at the time represented about 14% of all issued Ethers). In June of 2016 an unknown hacker took advantage of a flaw in the project’s code to siphon off one third of the DAO’s funds. This would eventually result in an hardfork of Ethereum’s blockchain which is why today we have Ethereum Classic and Ethereum. If you want to read more about this, [here is a wonderful article about it](https://blockgeeks.com/guides/what-is-ethereum-classic/). I believe this is an outdated diagram. [Here is the new one](https://github.com/ethereum/wiki/wiki/White-Paper#bitcoin-as-a-state-transition-system): ![New Diagram](https://i.imgur.com/GRByzT6.png) Looking at the new diagram. As described further below, the state of Bitcoin can be thought of as a collection of coins (technically "unspent transaction outputs” or UTXO) that have been mined but not yet spent. The UTXOs have an owner (essentially a public key) and a denomination (how many coins). Each element in the *State* part of the diagram represents a UTXO. The number to the left of the column is the address of the owner and the number to the right is the denomination. A bitcoin transaction contains one or more inputs which are composed by a reference to the UTXO and the signature of the owner which authorizes that UTXO to be used (represented under `Spend` and `Sig`). The transaction will generate one or more UTXOs (represented under `Create`) which will be included in the `State’`. ### Simplified Payment Verification Simplified Payment Verification (SPV) is about verifying that a transaction has been accepted into the blockchain without having to download the entire blockchain. With SPV the client downloads only the block headers and not the transactions themselves. ![SPV](http://i.imgur.com/IP9bHz2.png) In the [diagram](http://i.imgur.com/IP9bHz2.png), we can see a sequence of block headers. We are trying to check if transaction $Tx_{3}$ is part of the second block (block 2). In order to do that the client performing SPV needs to request a few more nodes of block 2’s Merkle tree from some other bitcoin client that has the whole blockchain locally. We only need to request *Hash01* and *Hash2*. Then we can use *Hash2* and *Hash3* (which we got from $Tx_{3}$) to compute *Hash23* and then we can use *Hash23* and *Hash01* to compute the Merkle Root hash. Finally, we compare the computed Merkle Root hash against the one referenced on block 2’s header. If those values match, $Tx_{3}$ has been accepted into the blockchain. If you want to learn more about SPV I suggest you check out [Bitcoin and the Blockchain - Chapter 6. The Bitcoin Network](http://chimera.labs.oreilly.com/books/1234000001802/ch06.html#spv_nodes) ### Byzantine Fault Tolerance Byzantine fault tolerance is the characteristic of a system that tolerates a class of failures known as the *Byzantine Generals’ Problem*. The Byzantine Generals’ Problem is a thought experiment first introduced by [Lamport, Shostak and Pease (1982)](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/The-Byzantine-Generals-Problem.pdf). Its original formulation involved Byzantine generals commanding armies on different sides of a city trying to decide on whether they should attack or retreat. The core of the problem is whether unanimity can be achieved in an unreliable distributed system. In the case of Bitcoin you want the nodes of the network to all eventually agree on one version of the blockchain and avoid problems like a user double spending tokens. If you wish to learn more about how Bitcoin’s proof-of-work system solves this problem I advise you to check out this [paper](https://www.nbavrc.nl/Documents/MCA/2017-2/Byzantine%20consensus%20through%20Bitcoin's%20proof-of-work.pdf)