The fallacy of this logic emerged recently as numerous impacts
of ongoing global warming emerged and as paleoclimate
implications for climate sensitivity became apparent. Arctic sea
ice end-of-summer minimum area, although variable from year to
year, has plummeted by more than a third in the past few decades,
at a faster rate than in most models [21], with the sea ice thickness
declining a factor of four faster than simulated in IPCC climate
models [22]. The Greenland and Antarctic ice sheets began to
shed ice at a rate, now several hundred cubic kilometers per year,
which is continuing to accelerate [23–25]. Mountain glaciers are
receding rapidly all around the world [26–29] with effects on
seasonal freshwater availability of major rivers [30–32]. The hot
dry subtropical climate belts have expanded as the troposphere has
warmed and the stratosphere cooled [33–36], contributing to
increases in the area and intensity of drought [37] and wildfires
[38]. The abundance of reef-building corals is decreasing at a rate
of 0.5–2%/year, at least in part due to ocean warming and
possibly ocean acidification caused by rising dissolved CO
2
[39–
41]. More than half of all wild species have shown significant
changes in where they live and in the timing of major life events
[42–44]. Mega-heatwaves, such as those in Europe in 2003, the
Moscow area in 2010, Texas and Oklahoma in 2011, Greenland
in 2012, and Australia in 2013 have become more widespread
with the increase demonstrably linked to global warming [45–47].
These growing climate impacts, many more rapid than
anticipated and occurring while global warming is less than 1uC,
imply that society should reassess what constitutes a ‘‘dangerous
level’’ of global warming. Earth’s paleoclimate history provides a
valuable tool for that purpose.
Paleoclimate Temperature
Major progress in quantitative understanding of climate change
has occurred recently by use of the combination of data from high
resolution ice cores covering time scales of order several hundred
thousand years [48–49] and ocean cores for time scales of order
one hundred million years [50]. Quantitative insights on global
temperature sensitivity to external forcings [51–52] and sea level
sensitivity to global temperature [52–53] are crucial to our
analyses. Paleoclimate data also provide quantitative information
about how nominally slow feedback processes amplify climate
sensitivity [51–52,54–56], which also is important to our analyses.
Earth’s surface temperature prior to instrumental measurements
is estimated via proxy data. We will refer to the surface
temperature record in Fig. 4 of a recent paper [52]. Global mean
temperature during the Eemian interglacial period (120,000 years
ago) is constrained to be 2uC warmer than our pre-industrial
(1880–1920) level based on several studies of Eemian climate [52].
The concatenation of modern and instrumental records [52] is
based on an estimate that global temperature in the first decade of
the 21st century (+0.8uC relative to 1880–1920) exceeded the
Holocene mean by 0.2560.25uC. That estimate was based in part
on the fact that sea level is now rising 3.2 mm/yr (3.2 m/
millennium) [57], an order of magnitude faster than the rate
during the prior several thousand years, with rapid change of ice
sheet mass balance over the past few decades [23] and Greenland
and Antarctica now losing mass at accelerating rates [23–24]. This
concatenation, which has global temperature 13.9uC in the base
period 1951–1980, has the first decade of the 21st century slightly
(,0.1uC) warmer than the early Holocene maximum. A recent
reconstruction from proxy temperature data [55] concluded that
global temperature declined about 0.7uC between the Holocene
maximum and a pre-industrial minimum before recent warming
brought temperature back near the Holocene maximum, which is
consistent with our analysis.
Climate oscillations evident in Fig. 4 of Hansen et al. [52] were
instigated by perturbations of Earth’s orbit and spin axis tilt
relative to the orbital plane, which alter the geographical and
seasonal distribution of sunlight on Earth [58]. These forcings
change slowly, with periods between 20,000 and 400,000 years,
and thus climate is able to stay in quasi-equilibrium with these
forcings. Slow insolation changes initiated the climate oscillations,
but the mechanisms that caused the climate changes to be so large
were two powerful amplifying feedbacks: the planet’s surface
albedo (its reflectivity, literally its whiteness) and atmospheric CO
2
amount. As the planet warms, ice and snow melt, causing the
surface to be darker, absorb more sunlight and warm further. As
the ocean and soil become warmer they release CO
2
and other
greenhouse gases, causing further warming. Together with fast
feedbacks processes, via changes of water vapor, clouds, and the
vertical temperature profile, these slow amplifying feedbacks were
responsible for almost the entire glacial-to-interglacial temperature
change [59–62].
The albedo and CO
2
feedbacks amplified weak orbital forcings,
the feedbacks necessarily changing slowly over millennia, at the
pace of orbital changes. Today, however, CO
2
is under the control
of humans as fossil fuel emissions overwhelm natural changes.
Atmospheric CO
2
has increased rapidly to a level not seen for at
least 3 million years [56,63]. Global warming induced by
increasing CO
2
will cause ice to melt and hence sea level to rise
as the global volume of ice moves toward the quasi-equilibrium
amount that exists for a given global temperature [53]. As ice
melts and ice area decreases, the albedo feedback will amplify
global warming.
Earth, because of the climate system’s inertia, has not yet fully
responded to human-made changes of atmospheric composition.
The ocean’s thermal inertia, which delays some global warming
for decades and even centuries, is accounted for in global climate
models and its effect is confirmed via measurements of Earth’s
energy balance (see next section). In addition there are slow
climate feedbacks, such as changes of ice sheet size, that occur
mainly over centuries and millennia. Slow feedbacks have little
effect on the immediate planetary energy balance, instead coming
into play in response to temperature change. The slow feedbacks
are difficult to model, but paleoclimate data and observations of
ongoing changes help provide quantification.
Earth’s Energy Imbalance
At a time of climate stability, Earth radiates as much energy to
space as it absorbs from sunlight. Today Earth is out of balance
because increasing atmospheric gases such as CO
2
reduce Earth’s
heat radiation to space, thus causing an energy imbalance, as there
is less energy going out than coming in. This imbalance causes
Earth to warm and move back toward energy balance. The
warming and restoration of energy balance take time, however,
because of Earth’s thermal inertia, which is due mainly to the
global ocean.
Earth warmed about 0.8uC in the past century. That warming
increased Earth’s radiation to space, thus reducing Earth’s energy
imbalance. The remaining energy imbalance helps us assess how
much additional warming is still ‘‘in the pipeline’’. Of course
increasing CO
2
is only one of the factors affecting Earth’s energy
balance, even though it is the largest climate forcing. Other
forcings include changes of aerosols, solar irradiance, and Earth’s
surface albedo.
Determination of the state of Earth’s climate therefore requires
measuring the energy imbalance. This is a challenge, because the
imbalance is expected to be only about 1 W/m
2
or less, so
accuracy approaching 0.1 W/m
2
is needed. The most promising
Assessing Dangerous Climate Change
PLOS ONE | www.plosone.org 4 December 2013 | Volume 8 | Issue 12 | e81648