AN ELEMENTARY PROOF OF WALLIS’ PRODUCT FORMULA
FOR PI
JOHAN W
¨
ASTLUND
Abstract. We give an elementary proof of the Wallis product formula for pi.
The proof does not require any integr ation or trigon ome tric functio ns.
1. The Wallis product formula
In 1655, John Wallis wrote down the celebrated formula
(1)
2
1
·
2
3
·
4
3
·
4
5
···=
⇡
2
.
Most textbook proofs of (1) rely on evaluation of some definite integral like
Z
⇡/2
0
(sin x)
n
dx
by repeated partial integration. The topic is usually reserved for more advanced
calculus courses. The purpose of this note is to show that (1) can be derived
using only the mathematics taught in elementary school, that is, basic algebra, the
Pythagorean theorem, and the formula ⇡ · r
2
for the area of a circle of radius r.
Viggo Brun gives an account of Wallis’ method in [1] (in Norwegian). Yaglom
and Yaglom [2] give a beautiful proof of (1) which avoids integration but uses some
quite sophisticated trigonometric identities.
2. A number sequence
We denote the Wallis product by
(2) W =
2
1
·
2
3
·
4
3
·
4
5
··· .
The partial products involving an even number of factors form an increasing se-
quence, while those involving an odd number of factors form a decreasing sequence.
We let s
0
= 0, s
1
= 1, and in general,
s
n
=
3
2
·
5
4
···
2n 1
2n 2
.
The partial pro ducts of (2) with an odd number of factors can be written as
2n
s
2
n
=
2
2
· 4
2
···(2n)
1 · 3
2
···(2n 1)
2
>W,
while the partial pro ducts with an even number of factors are of the form
2n 1
s
2
n
=
2
2
· 4
2
···(2n 2)
2
1 · 3
2
···(2n 3)
2
· (2n 1)
<W.
It follows that
(3)
2n 1
W
<s
2
n
<
2n
W
.
Date: February 21, 2005.
1