Nature Ecoogy & Evoution
Article https://doi.org/10.1038/s41559-024-02420-w
For the Cox regression models, we checked the assumption of
proportional hazards with a Schoenfeld test, which tests the null
hypothesis that there is no relationship between the scaled Schoen-
feld residuals and time. This test was non-significant (P > 0.05) for all
models, indicating no violation of the proportional hazards assump-
tion. For the Poisson regression model, we checked for overdispersion
using the AER package in R
59
. The dispersion parameter was estimated
to be 1.1, which did not differ significantly from the ideal value of 1
(P = 0.26), indicating that a Poisson distribution was appropriate. For
the linear regression model used to examine the change in vigilance
duration before versus after playbacks, visual inspection of the histo-
gram of the residuals indicated that the residuals were approximately
normally distributed. For treatment, distance, dBC, speaker location
and cumulative playback exposure, visual inspection of boxplots or
residual plots indicated approximate homoscedasticity. Relationship
of caller to original receiver and other adults were heteroscedastic.
However, regardless of whether these covariates were included, treat-
ment was not significant, so any potential issues with this model had
no bearing on the conclusions of our study.
Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
Data availability
Data are available at https://doi.org/10.5061/dryad.hmgqnk9nj (ref. 60).
Code availability
Code is available at https://doi.org/10.5281/zenodo.10576772 (ref. 61).
References
1. Fitch, W. T. The evolution of language: a comparative review.
Biol. Philos. 20, 193–230 (2005).
2. Macedonia, J. M. & Evans, C. S. Variation among mammalian
alarm call systems and the problem of meaning in animal signals.
Ethology 93, 177–197 (1993).
3. Clay, Z., Smith, C. L. & Blumstein, D. T. Food-associated
vocalizations in mammals and birds: what do these calls really
mean? Anim. Behav. 83, 323–330 (2012).
4. Wheeler, B. C. & Fischer, J. Functionally referential signals: a
promising paradigm whose time has passed. Evol. Anthropol. 21,
195–205 (2012).
5. Smith, E. A. Communication and collective action: language
and the evolution of human cooperation. Evol. Hum. Behav. 31,
231–245 (2010).
6. Dingemanse, M., Blasi, D. E., Lupyan, G., Christiansen, M. H. &
Monaghan, P. Arbitrariness, iconicity, and systematicity in
language. Trends Cogn. Sci. 19, 603–615 (2015).
7. King, S. L. & Janik, V. M. Bottlenose dolphins can use learned
vocal labels to address each other. Proc. Natl Acad. Sci. USA 110,
13216–13221 (2013).
8. Balsby, T. J. S., Momberg, J. V. & Dabelsteen, T. Vocal imitation in
parrots allows addressing of speciic individuals in a dynamic
communication network. PLoS ONE 7, e49747 (2012).
9. Janik, V. M. & Sayigh, L. S. Communication in bottlenose dolphins:
50 years of signature whistle research. J. Comp. Physiol. A 199,
479–489 (2013).
10. Poole, J. H., Tyack, P. L., Stoeger-Horwath, A. S. & Watwood, S.
Elephants are capable of vocal learning. Nature 434, 455–456
(2005).
11. Stoeger, A. S. et al. An Asian elephant imitates human speech.
Curr. Biol. 22, 2144–2148 (2012).
12. Soltis, J., Leong, K. & Savage, A. African elephant vocal
communication II: rumble variation relects the individual identity
and emotional state of callers. Anim. Behav. 70, 589–599 (2005).
13. Clemins, P. J., Johnson, M. T., Leong, K. M. & Savage, A. Automatic
classiication and speaker identiication of African elephant
(Loxodonta africana) vocalizations. J. Acoust. Soc. Am. 117,
956–963 (2005).
14. McComb, K., Moss, C., Sayialel, S. & Baker, L. Unusually extensive
networks of vocal recognition in African elephants. Anim. Behav.
59, 1103–1109 (2000).
15. Poole, J. H. in The Amboseli Elephants: A Long-Term Perspective on
a Long-Lived Mammal (eds Moss, C. J. et al.) 125–159
(Univ. Chicago Press, 2011).
16. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
17. Rhodes, J. S., Cutler, A. & Moon, K. R. Geometry- and
accuracy-preserving random forest proximities. IEEE Trans.
Pattern Anal. Mach. Intell. 45, 10947–10959 (2023).
18. Foley, N. M. et al. A genomic timescale for placental mammal
evolution. Science 380, eabl8189 (2023).
19. Dahlin, C. R., Young, A. M., Cordier, B., Mundry, R. & Wright, T. F.
A test of multiple hypotheses for the function of call sharing
in female budgerigars, Melopsittacus undulatus. Behav. Ecol.
Sociobiol. 68, 145–161 (2014).
20. Wanker, R., Sugama, Y. & Prinage, S. Vocal labelling of family
members in spectacled parrotlets, Forpus conspicillatus.
Anim. Behav. 70, 111–118 (2005).
21. Prat, Y., Taub, M. & Yovel, Y. Everyday bat vocalizations contain
information about emitter, addressee, context, and behavior.
Sci. Rep. 6, 39419 (2016).
22. Wittemyer, G., Douglas-Hamilton, I. & Getz, W. M. The
socioecology of elephants: analysis of the processes creating
multitiered social structures. Anim. Behav. 69, 1357–1371 (2005).
23. Archie, E. A., Moss, C. J. & Alberts, S. C. The ties that bind: genetic
relatedness predicts the ission and fusion of social groups in wild
African elephants. Proc. R. Soc. B 273, 513–522 (2006).
24. Howard, D. J., Gengler, C. & Jain, A. What’s in a name? A
complimentary means of persuasion. J. Consum. Res. 22,
200–211 (1995).
25. King, S. L., Sayigh, L. S., Wells, R. S., Fellner, W. & Janik, V. M.
Vocal copying of individually distinctive signature whistles in
bottlenose dolphins. Proc. R. Soc. B 280, 20130053 (2013).
26. Baotic, A. & Stoeger, A. S. Sexual dimorphism in African elephant
social rumbles. PLoS ONE 12, e0177411 (2017).
27. Stoeger, A. S., Zeppelzauer, M. & Baotic, A. Age-group
estimation in free-ranging African elephants based on
acoustic cues of low-frequency rumbles. Bioacoustics 23,
231–246 (2014).
28. Zaman, S. R., Sadekeen, D., Alfaz, M. A. & Shahriyar, R. One
source to detect them all: gender, age, and emotion detection
from voice. In Proc. IEEE 45th Annual Computers, Software, and
Applications Conference 338–343 (IEEE, 2021).
29. Berg, K. S., Delgado, S., Cortopassi, K. A., Beissinger, S. R. &
Bradbury, J. W. Vertical transmission of learned signatures in a
wild parrot. Proc. R. Soc. B 279, 585–591 (2012).
30. Stevens, S. S., Volkmann, J. & Newman, E. B. A scale for the
measurement of the psychological magnitude pitch. J. Acoust.
Soc. Am. 8, 185–190 (1937).
31. Vernes, S. C. et al. The multi-dimensional nature of vocal learning.
Philos. Trans. R. Soc. B 376, 20200236 (2021).
32. Bradbury, J. W. & Balsby, T. J. S. The functions of vocal learning in
parrots. Behav. Ecol. Sociobiol. 70, 293–312 (2016).
33. Connor, R. C. Dolphin social intelligence: complex alliance
relationships in bottlenose dolphins and a consideration of
selective environments for extreme brain size evolution in
mammals. Philos. Trans. R. Soc. Lond. B 362, 587–602 (2007).
34. Bachorec, E. et al. Spatial networks dier when food supply
changes: foraging strategy of Egyptian fruit bats. PLoS ONE 15,
e0229110 (2020).