FERMAT'S LIBRARY
Journal Club
Librarian
Margins
Log in
Join our newsletter to receive a new paper every week
Comments
Ask a question or post a comment about the paper
Join the discussion! Ask questions and share your comments.
Sign in with Google
Sign in with Facebook
Sign in with email
The first rigorous proof that π is irrational is from Johann Heinri...
That is, assume $\pi$ is rational.
To prove that $f(x)$ and its derivatives $f^{(j)}(x)$ have integral...
Shouldn't that be $F_n(x)$ ?
\begin{eqnarray*} & F''(x) &=f^{2}(x)-f^{4}(x)+f^{6}(x) - ... \\ &...
The idea now is to show that the integral of $f(x) sin(x)$ cannot a...
We can see that $f(x)$ is positive over $(0, \pi)$, and since $\pi$...