and
,/2-u
fo
hence
dv 1
2-u 2+v 2 = ~ arc tan
V2- u
X/2 - u s
1 2
The substitution u = y + -~-x(y - 1) in the integral
with respect to y converts this to
1 1
f f0
P +Q = du l+2ux +x 2 "
1
~tv~- u du
P
I
4
J0 arc tan V~-u s X/2-u s
v~ V~- u du
+ 4 | arc tan
t.b
/,a X/~- u s X/2- u s
J1
-- 11 + I2,
say. Put u = V2 sin 0 in
IlSO
that du = X/2 cos 0 dO
= X/2 - -u ~ dO, and tan 0 = u/X/2
- u 2.
This gives us
(6) 2
11 = 4 OdO =2
Now put u = cos ~ so that (sin ~)/(1 + 2ux + x 2) =
d ( x+cos~),hence
dx arc tan sin
lr
P + Q - 2 ~ d~P = -4 "
which, together with P = 2Q, implies P = 7ra/6.
References
In 12 we put u = X/2 cos 20 so that
du = -2X/2 sin 20 dO = -2X/2 X/1 -cosZ20 dO
=
-2X/2 X/1 - u2/2 dO -- -2V'2 - u 2 dO,
and
X/2 - u V~(1 - cos 20)
V~-_/./2
- X/2-2cos 220
~
1-cos20 _ ;__
1 ~ cos 20
2 sin 2 0
- tan 0,
2 cos 2 0
hence
Iz = 8f0 0d0 =4
(T) 2
Therefore I = I1 + 12 = 6 = 6 "
Note. Another evaluation of ~(2) using double in-
tegrals in a less straightforward manner was given by
F. Goldscheider [3] in response to a problem proposed
by P. St~ckel. He considers the two double integrals
p =
1 1
dx dy
1 1
dx dy
fo fo --andQ= fo fo
1 - xy 1 + xy
1p
and shows first thatP-Q = 2 sop =2Q. Onthe
other hand,
1 1
f fo
P +Q = 1 dy l+xy"
1. R. Ap6ry (1979) Irrationalit6 de ~(2) et ~(3). Astdr-
isque 61:11-13. Paris: Societ6 Math~matique de France.
2. F. Beukers (1979) A note on the irrationality of ~(2) and
~(3), Bull. Lon. Math. Soc. 11:268-272.
3. F. Goldscheider (1913) Arch. Math. Phys. 20:323-324.
California Institute of Technology
Pasadena, California 91125
Ergebnisse der Mathematik,
3. Folge
A Series of Modern Surveys in
Mathematics
Edited by:
S. Feferman, N.H. Kuiper, P. Lax,
W. Schmid, J-P. Serre. J.L, Tits
R. Remmert, Managing Editor
Following five decades of successful pub-
lication, the first two volumes of the new
third sequence of this well-known series are
now available to the mathematics community.
To order write:
Springer-Verlag New York Inc.
175 Fifth Ave., New York, N.Y. 10010
Springer-Verlag
New York Heidelberg Berlin Tokyo
60
THE MATHEMATICAL INTELLIGENCER VOL. 5, NO. 3, 1983