A Not So Famous Goldbach Conjecture
Goldbach to Euler
Petersburg, November 18th, 1752
Sir,
you kindly wrote me some time ago that the books
which Mr. Spener addressed to me were already dis-
patched from Berlin in July; however, up to this moment
I do not know to which merchant in Petersburg they were
addressed or if they were even left behind at Lübeck. As
it is not known to me by what shortcuts you obtained
the difference of the series
1
3
+
1
7
+
1
11
+
1
19
+ . . . and
1
5
+
1
13
+
1
17
+
1
29
+ . . . ,if you have already published the
method, please tell me where it is to be found. I take it to
be certain that the number of all primes of the form a
2
+1
is infinitely large, even if I cannot immediately prove it,
and I do not think your reason for doubting it - that the
number of primes of the form a
2
+ 1 is infinitely smaller
than the number of all primes - is at all relevant, since
no infinite number can be taken so small that it is not
infinitely greater than some other infinite. Mersenne as-
suredly did not say that only ten perfect numbers are pos-
sible, as he himself indicates eleven, among which your
eighth one, Sir, is however not comprised; he does not
state either that the number of perfect numbers is finite,
but only that no range of numbers can be indicated which
is so large that it could not be devoid of perfect numbers.
You will be able to see that for yourself - in case tome
II of the Commentarii has still not arrived - from the
general preface to Mersenne’s Cogitata Physico Mathe-
matica, §19, as cited by Mr.Winsheim. As regards Le-
uneschloß’s Paradoxa mathematica, they were printed at
Heidelberg in 1658, in octavo; however, I never possessed
this book myself, but borrowed the copy which I read in
1716 from the Old City Library at Königsberg, and re-
turned it there before I departed for the last time in 1718,
so it is impossible that you could have seen the book at
my place in Petersburg. On the other hand, I remember
- though not with utter certainty - that some years ago
you wrote me from Berlin you had got the book, along
with Bongo’s 1591 list, from the Royal Library. I am not
aware of anything further about this Leuneschloß than
that I read somewhere he had been a professor at Heidel-
berg; if I am not mistaken, he is also referred to by some
as ’Luneschlos’, so his name should have to be looked up
in the encyclopedias in both spellings. It seems that he
found his paradox on perfect numbers in Mersenne and
afterwards, when writing it down from memory, deviated
from Mersenne’s true meaning. I had already observed
in one of my earlier letters that no algebraic formula can
yield only prime numbers; indeed, taking the formula to
be, for example, x
3
+ bx
2
+ cx + e, it is obvious that
whenever x is a multiple of the absolute term e, then
(and consequently infinitely often) the formula will yield
a non-prime number; but if e were to equal 1, I merely
substitute x+p for x, as then the formula is changed into
x
3
+ 3px
2
+ 3p
2
x + p
3
+bx
2
+ 2bpx + bp
2
+cx + cp
+ 1
(1)
and whenever x is a multiple of the number p
3
+ bp
2
+
cp + 1, the formula yields a non-prime number. Now
since this case where the highest power of x equals 3 can
be extended to all other whims of nature, whatever the
power of x is, it is impossible to indicate an algebraic
series in which there should not occur infinitely many
terms consisting of non-prime numbers. I have yet an-
other small theorem to add, which is quite new and which
I take to be true until the contrary is proved: Any odd
number equals the sum of twice a square and a prime,
or: 2n − 1 = 2a
2
+ p, where a is to signify a whole num-
ber, including 0, and p a prime number; for example,
17 = 2 · 0
2
+ 17; 21 = 2 · 1
2
+ 19; 27 = 2 · 2
2
+ 19, and
so on. With a dutiful recommendation to your dearest
family, I remain, Sir, your most devoted servant
Goldbach.