6.2 Perturbed Simulations
Perturb θ
g
← θ
g
(1 + 0.5 sin(2π · 100 · ln p
n
/ ln x)), mimicking zero at 0.4 + 100i.
At x = 10
8
, variances remain 0.0833; balance unchanged. Subtle oscillations (period
∼ 6, 907) wobble the spiral but preserve tautness, aligning with the axis’s stability [13].
Twin counts match known values [14]: 440,312 up to 10
8
.
7 Discussion and Implications
The correspondence explains 1/2’s centrality: from G’s embedding and functional form.
For twins (bridges across classes), the balanced spirals support infinitude [15], with DULA
providing the algebraic frame for analytic proofs.
Future: Extend spirals to L-zero approximations; test GRH via class imbalances.
References
[1] Dula, J. & Grok 4. (2025). The DULA Theorem: Graded Monoid Isomorphisms for Prime
Congruences Across Moduli. Fermat’s Library.
[2] Riemann, B. (1859). Ueber die Anzahl der Primzahlen unter einer gegebenen Gr¨osse.
Monatsberichte der Berliner Akademie.
[3] Dirichlet, P.G.L. (1837). Beweis des Satzes, dass jede unbegrenzte arithmetische Pro-
gression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor
sind, unendlich viele Primzahlen enth¨alt. Abhandlungen der K¨oniglichen Preussischen
Akademie der Wissenschaften.
[4] Ireland, K. & Rosen, M. (1990). *A Classical Introduction to Modern Number Theory*.
Springer.
[5] Neukirch, J. (1999). *Algebraic Number Theory*. Springer.
[6] Davenport, H. (2000). *Multiplicative Number Theory*. Springer.
[7] Iwaniec, H. & Kowalski, E. (2004). *Analytic Number Theory*. AMS.
[8] Bombieri, E. (2000). The Riemann Hypothesis. Clay Mathematics Institute.
[9] Montgomery, H.L. & Vaughan, R.C. (2007). *Multiplicative Number Theory I*. Cam-
bridge UP.
[10] Washington, L.C. (1997). *Introduction to Cyclotomic Fields*. Springer.
[11] Ram Murty, M. (2012). *Problems in Analytic Number Theory*. Springer.
[12] Hardy, G.H. & Littlewood, J.E. (1924). Some problems of ’Partitio numerorum’ III: On
the expression of a number as a sum of primes. Acta Mathematica.
4